ﻻ يوجد ملخص باللغة العربية
We study the degenerate Kolmogorov equations (also known as kinetic Fokker-Planck equations) in nondivergence form. The leading coefficients $a^{ij}$ are merely measurable in $t$ and satisfy the vanishing mean oscillation (VMO) condition in $x, v$ with respect to some quasi-metric. We also assume boundedness and uniform nondegeneracy of $a^{ij}$ with respect to $v$. We prove global a priori estimates in weighted mixed-norm Lebesgue spaces and solvability results. We also show an application of the main result to the Landau equation. Our proof does not rely on any kernel estimates.
We prove two new results connected with elliptic Fokker-Planck-Kolmogorov equations with drifts integrable with respect to solutions. The first result answers negatively a long-standing question and shows that a density of a probability measure satis
In this paper we study second order stochastic differential equations with measurable and density-distribution dependent coefficients. Through establishing a maximum principle for kinetic Fokker-Planck-Kolmogorov equations with distribution-valued in
In this paper, we establish $L_p$ estimates and solvability for time fractional divergence form parabolic equations in the whole space when leading coefficients are merely measurable in one spatial variable and locally have small mean oscillations wi
Using time dependent Lyapunov functions, we prove pointwise upper bounds for the heat kernels of some nonautonomous Kolmogorov operators with possibly unbounded drift and diffusion coefficients.
We are concerned with the short- and large-time behavior of the $L^2$-propagator norm of Fokker-Planck equations with linear drift, i.e. $partial_t f=mathrm{div}_{x}{(D abla_x f+Cxf)}$. With a coordinate transformation these equations can be normali