ترغب بنشر مسار تعليمي؟ اضغط هنا

Propagator norm and sharp decay estimates for Fokker-Planck equations with linear drift

82   0   0.0 ( 0 )
 نشر من قبل Beatrice Signorello
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We are concerned with the short- and large-time behavior of the $L^2$-propagator norm of Fokker-Planck equations with linear drift, i.e. $partial_t f=mathrm{div}_{x}{(D abla_x f+Cxf)}$. With a coordinate transformation these equations can be normalized such that the diffusion and drift matrices are linked as $D=C_S$, the symmetric part of $C$. The main result of this paper is the connection between normalized Fokker-Planck equations and their drift-ODE $dot x=-Cx$: Their $L^2$-propagator norms actually coincide. This implies that optimal decay estimates on the drift-ODE (w.r.t. both the maximum exponential decay rate and the minimum multiplicative constant) carry over to sharp exponential decay estimates of the Fokker-Planck solution towards the steady state. A second application of the theorem regards the short time behaviour of the solution: The short time regularization (in some weighted Sobolev space) is determined by its hypocoercivity index, which has recently been introduced for Fokker-Planck equations and ODEs (see [5, 1, 2]). In the proof we realize that the evolution in each invariant spectral subspace can be represented as an explicitly given, tensored version of the corresponding drift-ODE. In fact, the Fokker-Planck equation can even be considered as the second quantization of $dot x=-Cx$.



قيم البحث

اقرأ أيضاً

We prove sharp pointwise decay estimates for critical Dirac equations on $mathbb{R}^n$ with $ngeq 2$. They appear for instance in the study of critical Dirac equations on compact spin manifolds, describing blow-up profiles, and as effective equations in honeycomb structures. For the latter case, we find excited states with an explicit asymptotic behavior. Moreover, we provide some classification results both for ground states and for excited states.
We study the degenerate Kolmogorov equations (also known as kinetic Fokker-Planck equations) in nondivergence form. The leading coefficients $a^{ij}$ are merely measurable in $t$ and satisfy the vanishing mean oscillation (VMO) condition in $x, v$ wi th respect to some quasi-metric. We also assume boundedness and uniform nondegeneracy of $a^{ij}$ with respect to $v$. We prove global a priori estimates in weighted mixed-norm Lebesgue spaces and solvability results. We also show an application of the main result to the Landau equation. Our proof does not rely on any kernel estimates.
73 - Yu Cao , Jianfeng Lu , Yulong Lu 2018
We prove the exponential convergence to the equilibrium, quantified by Renyi divergence, of the solution of the Fokker-Planck equation with drift given by the gradient of a strictly convex potential. This extends the classical exponential decay result on the relative entropy for the same equation.
146 - Said Benachour 2008
Sharp temporal decay estimates are established for the gradient and time derivative of solutions to a viscous Hamilton-Jacobi equation as well the associated Hamilton-Jacobi equation. Special care is given to the dependence of the estimates on the vi scosity. The initial condition being only continuous and either bounded or non-negative. The main requirement on the Hamiltonians is that it grows superlinearly or sublinearly at infinity, including in particular H(r) = r^p for r non-negatif and p positif and different from 1.
109 - Lucas Izydorczyk 2020
Usually Fokker-Planck type partial differential equations (PDEs) are well-posed if the initial condition is specified. In this paper, alternatively, we consider the inverse problem which consists in prescribing final data: in particular we give suffi cient conditions for existence and uniqueness. In the second part of the paper we provide a probabilistic representation of those PDEs in the form a solution of a McKean type equation corresponding to the time-reversal dynamics of a diffusion process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا