ﻻ يوجد ملخص باللغة العربية
Structural engineering knowledge can be of significant importance to the architectural design team during the early design phase. However, architects and engineers do not typically work together during the conceptual phase; in fact, structural engineers are often called late into the process. As a result, updates in the design are more difficult and time-consuming to complete. At the same time, there is a lost opportunity for better design exploration guided by structural feedback. In general, the earlier in the design process the iteration happens, the greater the benefits in cost efficiency and informed de-sign exploration, which can lead to higher-quality creative results. In order to facilitate an informed exploration in the early design stage, we suggest the automation of fundamental structural engineering tasks and introduce ApproxiFramer, a Machine Learning-based system for the automatic generation of structural layouts from building plan sketches in real-time. The system aims to assist architects by presenting them with feasible structural solutions during the conceptual phase so that they proceed with their design with adequate knowledge of its structural implications. In this paper, we describe the system and evaluate the performance of a proof-of-concept implementation in the domain of orthogonal, metal, rigid structures. We trained a Convolutional Neural Net to iteratively generate structural design solutions for sketch-level building plans using a synthetic dataset and achieved an average error of 2.2% in the predicted positions of the columns.
Scalable and cost-effective solutions to renewable energy storage are essential to addressing the worlds rising energy needs while reducing climate change. As we increase our reliance on renewable energy sources such as wind and solar, which produce
We consider a variation on the classical finance problem of optimal portfolio design. In our setting, a large population of consumers is drawn from some distribution over risk tolerances, and each consumer must be assigned to a portfolio of lower ris
We present a method for improving the efficiency and user experience of freeform illumination design with machine learning. By utilizing orthogonal polynomials to interface with artificial neural networks, we are able to generalize relationships betw
The structural design process for buildings is time-consuming and laborious. To automate this process, structural engineers combine optimization methods with simulation tools to find an optimal design with minimal building mass subject to building re
Computer-aided design (CAD) programs are essential to engineering as they allow for better designs through low-cost iterations. While CAD programs are typically taught to undergraduate students as a job skill, such software can also help students lea