ترغب بنشر مسار تعليمي؟ اضغط هنا

$H_{infty}$ Inverse Optimal Attitude Tracking on the Special Orthogonal Group $SO(3)$

110   0   0.0 ( 0 )
 نشر من قبل Muhammad Farooq Haydar Dr
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of attitude tracking using rotation matrices is addressed using an approach which combines inverse optimality and $mathcal{L}_{2}$ disturbance attenuation. Conditions are provided which solve the inverse optimal nonlinear $H_{infty}$ control problem by minimizing a meaningful cost function. The approach guarantees that the energy gain from an exogenous disturbance to a specified error signal respects a given upper bound. For numerical simulations, a simple problem setup from literature is considered and results demonstrate competitive performance.



قيم البحث

اقرأ أيضاً

The modern power system features high penetration of power converters due to the development of renewables, HVDC, etc. Currently, the controller design and parameter tuning of power converters heavily rely on rich engineering experience and extrapola tion from a single converter system, which may lead to inferior performance or even instabilities under variable grid conditions. In this paper, we propose an $H_{infty}$-control design framework to provide a systematic way for the robust and optimal control design of power converters. We discuss how to choose weighting functions to achieve anticipated and robust performance with regards to multiple control objectives. Further, we show that by a proper choice of the weighting functions, the converter can be conveniently specified as grid-forming or grid-following in terms of small-signal dynamics. Moreover, this paper first proposes a decentralized stability criterion based on the small gain theorem, which enables us to guarantee the global small-signal stability of a multi-converter system through local control design of the power converters. We provide high-fidelity nonlinear simulations and hardware-in-the-loop (HIL) real-time simulations to illustrate the effectiveness of our method.
We develop a model predictive control (MPC) design for systems with discrete-time dynamics evolving on smooth manifolds. We show that the properties of conventional MPC for dynamics evolving on $mathbb R^n$ are preserved and we develop a design proce dure for achieving similar properties. We also demonstrate that for discrete-time dynamics on manifolds with Euler characteristic not equal to 1, there do not exist globally stabilizing, continuous control laws. The MPC law is able to achieve global asymptotic stability on these manifolds, because the MPC law may be discontinuous. We apply the method to spacecraft attitude control, where the spacecraft attitude evolves on the Lie group SO(3) and for which a continuous globally stabilizing control law does not exist. In this case, the MPC law is discontinuous and achieves global stability.
In this article we introduce the use of recently developed min/max-plus techniques in order to solve the optimal attitude estimation problem in filtering for nonlinear systems on the special orthogonal (SO(3)) group. This work helps obtain computatio nally efficient methods for the synthesis of deterministic filters for nonlinear systems -- i.e. optimal filters which estimate the state using a related optimal control problem. The technique indicated herein is validated using a set of optimal attitude estimation example problems on SO(3).
We derive novel results on the ergodic theory of irreducible, aperiodic Markov chains. We show how to optimally steer the network flow to a stationary distribution over a finite or infinite time horizon. Optimality is with respect to an entropic dist ance between distributions on feasible paths. When the prior is reversible, it shown that solutions to this discrete time and space steering problem are reversible as well. A notion of temperature is defined for Boltzmann distributions on networks, and problems analogous to cooling (in this case, for evolutions in discrete space and time) are discussed.
288 - Jun Ma , Zilong Cheng , Haiyue Zhu 2021
Magnetic levitation positioning technology has attracted considerable research efforts and dedicated attention due to its extremely attractive features. The technology offers high-precision, contactless, dust/lubricant-free, multi-axis, and large-str oke positioning. In this work, we focus on the accurate and smooth tracking problem of a multi-axis magnetically levitated (maglev) planar positioning system for a specific S-curve reference trajectory. The floating characteristics and the multi-axis coupling make accurate identification of the system dynamics difficult, which lead to a challenge to design a high performance control system. Here, the tracking task is achieved by a 2-Degree of Freedom (DoF) controller consisting of a feedforward controller and a robust stabilizing feedback controller with a prescribed sparsity pattern. The approach proposed in this paper utilizes the basis of an H-infinity controller formulation and a suitably established convex inner approximation. Particularly, a subset of robust stabilizable controllers with prescribed structural constraints is characterized in the parameter space, and so thus the re-formulated convex optimization problem can be easily solved by several powerful numerical algorithms and solvers. With this approach, the robust stability of the overall system is ensured with a satisfactory system performance despite the presence of parametric uncertainties. Furthermore, experimental results clearly demonstrate the effectiveness of the proposed approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا