ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling continuum intensity perturbations caused by solar acoustic oscillations

65   0   0.0 ( 0 )
 نشر من قبل Nadiia Kostogryz
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Helioseismology is the study of the solar interior using observations of oscillations at the surface. It suffers from systematic errors, such as a center-to-limb error in travel-time measurements. Understanding these errors requires a good understanding of the nontrivial relationship between wave displacement and helioseismic observables. The wave displacement causes perturbations in the atmospheric thermodynamical quantities which perturb the opacity, the optical depth, the source function, and the local ray geometry, thus affecting the emergent intensity. We aim to establish the most complete relationship up to now between the displacement and the intensity perturbation by solving the radiative transfer problem in the atmosphere. We derive an expression for the intensity perturbation caused by acoustic oscillations at any point on the solar disk by applying the first-order perturbation theory. As input, we consider adiabatic modes of oscillation of different degrees. The background and the perturbed intensities are computed considering the main sources of opacity in the continuum. We find that, for all modes, the perturbations to the thermodynamical quantities are not sufficient to model the intensity. In addition, the geometrical effects due to the displacement must be taken into account as they lead to a difference in amplitude and a phase shift between the temperature at the surface and intensity perturbations. The closer to the limb, the larger the differences. This work presents improvements for the computation of the intensity perturbations, in particular for high-degree modes, and explains differences in intensity computations in earlier works. The phase shifts and amplitude differences between the temperature and intensity perturbations increase towards the limb. This should help to interpret some of the systematic center-to-limb effects observed in local helioseismology.

قيم البحث

اقرأ أيضاً

Quasi-biennial oscillations (QBO) are frequently observed in the solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here we study the stability of magnetic Rossby waves in the solar tac hocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength > 10^5 G triggers the instability of the m=1 magnetic Rossby wave harmonic with a period of 2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends on the differential rotation parameters and the magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in the solar activity features. The period of QBO may change throughout the cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.
137 - Ariane Schad , Markus Roth 2020
Todays picture of the internal solar rotation rate profile results essentially from helioseismic analyses of frequency splittings of resonant acoustic waves. Here we present another, complementary estimation of the internal solar rotation rate using the perturbation of the shape of the acoustic waves. For this purpose, we extend a global helioseismic approach developed previously for the investigation of the meridional flow cite{schad11, schad12, schad13} to work on the components of the differential rotation. We discuss the effect of rotation on mode eigenfunctions and thereon based observables. Based on a numerical study using a simulated rotation rate profile we tailor an inversion approach and also consider the case of the presence of an additional meridional flow. This inversion approach is then applied to data from the MDI (Michelson Doppler Imager aboard the Solar Heliospheric Observatory (SoHO)) instrument and the HMI (Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory (SDO)) instrument. In the end, rotation rate profiles estimated from eigenfunction perturbation and frequency splittings are compared. The rotation rate profiles from the two different approaches are qualitatively in good agreement, especially for the MDI data. Significant differences are obtained at high latitudes $> 50^{circ}$ and near the subsurface. The result from HMI data shows larger discrepancies between the different methods. We find that the two global helioseismic approaches provide complementary methods for measuring solar rotation. Comparing the results from different methods may help to reveal systematic influences that affect analyses based on eigenfunction perturbations, like meridional flow measurements.
We gave an extensive study for the quasi-periodic perturbations on the time profiles of the line of sight (LOS) magnetic field in 10x10 sub-areas in a solar plage region (corresponds to a facula on the photosphere). The perturbations are found to be associated with enhancement of He I 10830 A absorption in a moss region, which is connected to loops with million-degree plasma. FFT analysis to the perturbations gives a kind of spectrum similar to that of Doppler velocity: a number of discrete periods around 5 minutes. The amplitudes of the magnetic perturbations are found to be proportional to magnetic field strength over these sub-areas. In addition, magnetic perturbations lag behind a quarter of cycle in phase with respect to the p-mode Doppler velocity. We show that the relationships can be well explained with an MHD solution for the magneto-acoustic oscillations in high-b{eta} plasma. Observational analysis also shows that, for the two regions with the stronger and weaker magnetic field, the perturbations are always anti-phased. All findings show that the magnetic perturbations are actually magneto-acoustic oscillations on the solar surface, the photosphere, powered by p-mode oscillations. The findings may provide a new diagnostic tool for exploring the relationship between magneto-acoustic oscillations and the heating of solar upper atmosphere, as well as their role in helioseismology.
In this paper, we report the observed temporal correlation between extreme-violet (EUV) emission and magneto-acoustic oscillations in a EUV moss region, which is the footpoint region only connected by magnetic loops with million-degree plasma. The re sult is obtained from a detailed multi-wavelength data analysis to the region with the purpose of resolving fine-scale mass and energy flows that come from the photosphere, pass through the chromosphere and finally heat solar transition region or the corona. The data set covers three atmospheric levels on the Sun, consisting of high-resolution broad-band imaging at TiO 7057 AA and the line of sight magnetograms for the photosphere, high-resolution narrow-band images at Helium textsc{i} 10830 AA for the chromosphere and EUV images at 171 AA for the corona. We report following new phenomena: 1) Repeated injections of chromospheric material shown as 10830 AA absorption are squirted out from inter-granular lanes with the period of $sim$ 5 minutes. 2) EUV emissions are found to be periodically modulated with the similar periods of $sim$ 5 minutes. 3) Around the injection area where 10830 AA absorption is enhanced, both EUV emissions and the strength of magnetic field are remarkably stronger. 4) The peaks on the time profile of the EUV emissions are found to be in sync with oscillatory peaks of the stronger magnetic field in the region. These findings may give a series of strong evidences supporting the scenario that coronal heating is powered by magneto-acoustic waves.
291 - K. L. Yeo , N. A. Krivova 2021
We aim to gain insight into the effect of network and faculae on solar irradiance from their apparent intensity. Taking full-disc observations from the Solar Dynamics Observatory, we examined the intensity contrast of network and faculae in the conti nuum and core of the Fe I 6173 {AA} line and 1700 {AA}, including the variation with magnetic flux density, distance from disc centre, nearby magnetic fields, and time. The brightness of network and faculae is believed to be suppressed by nearby magnetic fields from its effect on convection. The difference in intensity contrast between the quiet-Sun network and active region faculae, noted by various studies, arises because active regions are more magnetically crowded and is not due to any fundamental physical differences between network and faculae. These results highlight that solar irradiance models need to include the effect of nearby magnetic fields on network and faculae brightness. We found evidence that suggests that departures from local thermal equilibrium (LTE) might have limited effect on intensity contrast. This could explain why solar irradiance models that are based on the intensity contrast of solar surface magnetic features calculated assuming LTE reproduce the observed spectral variability even where the LTE assumption breaks down. Certain models of solar irradiance employ chromospheric indices as direct indications of the effect of network and faculae on solar irradiance. Based on past studies of the Ca II K line and on the intensity contrast measurements derived here, we show that the fluctuations in chromospheric emission from network and faculae are a reasonable estimate of the emission fluctuations in the middle photosphere, but not of those in the lower photosphere. The data set, which extends from 2010 to 2018, indicates that intensity contrast was stable to about 3% in this period.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا