ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasi-biennial oscillations in the solar tachocline caused by magnetic Rossby wave instabilities

143   0   0.0 ( 0 )
 نشر من قبل Teimuraz Zaqarashvili
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quasi-biennial oscillations (QBO) are frequently observed in the solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here we study the stability of magnetic Rossby waves in the solar tachocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength > 10^5 G triggers the instability of the m=1 magnetic Rossby wave harmonic with a period of 2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends on the differential rotation parameters and the magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in the solar activity features. The period of QBO may change throughout the cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.

قيم البحث

اقرأ أيضاً

Long-term records of sunspot number and concentrations of cosmogenic radionuclides (10Be and 14C) on the Earth reveal the variation of the Suns magnetic activity over hundreds and thousands of years. We identify several clear periods in sunspot, 10Be , and 14C data as 1000, 500, 350, 200 and 100 years. We found that the periods of the first five spherical harmonics of the slow magnetic Rossby mode in the presence of a steady toroidal magnetic field of 1200-1300 G in the lower tachocline are in perfect agreement with the time scales of observed variations. The steady toroidal magnetic field can be generated in the lower tachocline either due to the steady dynamo magnetic field for low magnetic diffusivity or due to the action of the latitudinal differential rotation on the weak poloidal primordial magnetic field, which penetrates from the radiative interior. The slow magnetic Rossby waves lead to variations of the steady toroidal magnetic field in the lower tachocline, which modulate the dynamo magnetic field and consequently the solar cycle strength. This result constitutes a key point for long-term prediction of the cycle strength. According to our model, the next deep minimum in solar activity is expected during the first half of this century.
Apart from the 11-year solar cycle, another periodicity around 155-160 days was discovered during solar cycle 21 in high energy solar flares, and its presence in sunspot areas and strong magnetic flux has been also reported. This periodicity has an e lusive and enigmatic character, since it usually appears only near the maxima of solar cycles, and seems to be related with a periodic emergence of strong magnetic flux at the solar surface. Therefore, it is probably connected with the tachocline, a thin layer located near the base of the solar convection zone, where strong dynamo magnetic field is stored. We study the dynamics of Rossby waves in the tachocline in the presence of a toroidal magnetic field and latitudinal differential rotation. Our analysis shows that the magnetic Rossby waves are generally unstable and that the growth rates are sensitive to the magnetic field strength and to the latitudinal differential rotation parameters. Variation of the differential rotation and the magnetic field strength throughout the solar cycle enhance the growth rate of a particular harmonic in the upper part of the tachocline around the maximum of the solar cycle. This harmonic is symmetric with respect to the equator and has a period of 155-160 days. A rapid increase of the wave amplitude could give place to a magnetic flux emergence leading to observed periodicities in solar activity indicators related with magnetic flux.
73 - L. H. Deng , Y. Fei , H. Deng 2020
Quasi-biennial oscillations (QBOs) are considered as a fundamental mode of solar magnetic activity at low latitudes ($leq50^circ$). However, the evolutionary aspect and the hemispheric distribution of solar QBOs at high latitudes ($geq60^circ$) are r arely studied. Here, a relatively novel time-frequency analysis technique, named the synchrosqueezed wavelet transform, is applied to extract the main components of the polar faculae in the northern and southern hemispheres for the time interval from August 1951 to December 1998. It is found as the following: (1) Apart from the 22-year Hale cycle, the 17-year extended activity cycle, and the 11-year Schwabe cycle, the QBOs have been estimated as a prominent timescale of solar magnetic activity at high latitudes; (2) the QBOs of the polar faculae are coherent in the two hemispheres, but the temporal (phase) and the spatial (amplitude) variations of solar QBOs occur unevenly on both hemispheres; and (3) for the 11-year period mode, the northern hemisphere begins three months earlier than that in the southern one. Moreover, the spatial and temporal distributions of the hemispheric QBOs differ from those of the 11-year Schwabe cycle mode in the two hemispheres. Our findings could be helpful to improve our knowledge on the physical origin of the spatial distribution of solar QBOs at high latitudes, and could also provide more constraints on solar dynamo models introduced to characterize the different components of the solar magnetic activity cycle.
Annual oscillations have been detected in many indices of solar activity during many cycles. Recent multi spacecraft observations of coronal bright points revealed slow retrograde toroidal phase drift (with the speed of 3 m/s of 1 yr oscillations, wh ich naturally suggested their connection with Rossby-type waves in the interior. We have studied from a theoretical point of view the dynamics of global magneto-Kelvin and magneto-Rossby waves in the solar tachocline with toroidal magnetic field. Using spherical coordinates, the dispersion relations of the waves and latitudinal structure of solutions were obtained analytically. We have also obtained the spectrum of unstable magneto-Rossby wave harmonics in the presence of the latitudinal differential rotation. Estimated periods and phase speeds show that the magneto-Rossby waves rather than the Kelvin waves match with the observations of 1 yr oscillations. On the other hand, Morlet wavelet analysis of Greenwich Royal Observatory sunspot areas for the solar cycle 23 has revealed multiple periodicities with periods of 450-460 days, 370-380 days, 310-320 days, 240-270 days, and 150-175 days in hemispheric and full disk data. Comparison of theoretical results with the observations allow us to conclude that the global magneto-Kelvin waves in the upper overshoot tachocline may be responsible for the periodicity of 450-460 days (1.3 yrs), while the remaining periods can be connected with different harmonics of global fast magneto-Rossby waves.
We study the Rossby wave instability model of high-frequency quasi-periodic oscillations (QPO) of microquasars. We show ray-traced light curves of QPO within this model and discuss perspectives of distinguishing alternative QPO models with the future Large Observatory For X-ray Timing (LOFT) observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا