ترغب بنشر مسار تعليمي؟ اضغط هنا

Solving ESL Sentence Completion Questions via Pre-trained Neural Language Models

257   0   0.0 ( 0 )
 نشر من قبل Zitao Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Sentence completion (SC) questions present a sentence with one or more blanks that need to be filled in, three to five possible words or phrases as options. SC questions are widely used for students learning English as a Second Language (ESL) and building computational approaches to automatically solve such questions is beneficial to language learners. In this work, we propose a neural framework to solve SC questions in English examinations by utilizing pre-trained language models. We conduct extensive experiments on a real-world K-12 ESL SC question dataset and the results demonstrate the superiority of our model in terms of prediction accuracy. Furthermore, we run precision-recall trade-off analysis to discuss the practical issues when deploying it in real-life scenarios. To encourage reproducible results, we make our code publicly available at url{https://github.com/AIED2021/ESL-SentenceCompletion}.

قيم البحث

اقرأ أيضاً

276 - Bohan Li , Hao Zhou , Junxian He 2020
Pre-trained contextual representations like BERT have achieved great success in natural language processing. However, the sentence embeddings from the pre-trained language models without fine-tuning have been found to poorly capture semantic meaning of sentences. In this paper, we argue that the semantic information in the BERT embeddings is not fully exploited. We first reveal the theoretical connection between the masked language model pre-training objective and the semantic similarity task theoretically, and then analyze the BERT sentence embeddings empirically. We find that BERT always induces a non-smooth anisotropic semantic space of sentences, which harms its performance of semantic similarity. To address this issue, we propose to transform the anisotropic sentence embedding distribution to a smooth and isotropic Gaussian distribution through normalizing flows that are learned with an unsupervised objective. Experimental results show that our proposed BERT-flow method obtains significant performance gains over the state-of-the-art sentence embeddings on a variety of semantic textual similarity tasks. The code is available at https://github.com/bohanli/BERT-flow.
101 - Xu Zou , Da Yin , Qingyang Zhong 2021
Large-scale pre-trained language models have demonstrated strong capabilities of generating realistic text. However, it remains challenging to control the generation results. Previous approaches such as prompting are far from sufficient, which limits the usage of language models. To tackle this challenge, we propose an innovative method, inverse prompting, to better control text generation. The core idea of inverse prompting is to use generated text to inversely predict the prompt during beam search, which enhances the relevance between the prompt and the generated text and provides better controllability. Empirically, we pre-train a large-scale Chinese language model to perform a systematic study using human evaluation on the tasks of open-domain poem generation and open-domain long-form question answering. Our results show that our proposed method substantially outperforms the baselines and that our generation quality is close to human performance on some of the tasks. Narrators can try our poem generation demo at https://pretrain.aminer.cn/apps/poetry.html, while our QA demo can be found at https://pretrain.aminer.cn/app/qa. For researchers, the code is provided in https://github.com/THUDM/InversePrompting.
Contextualized representations trained over large raw text data have given remarkable improvements for NLP tasks including question answering and reading comprehension. There have been works showing that syntactic, semantic and word sense knowledge a re contained in such representations, which explains why they benefit such tasks. However, relatively little work has been done investigating commonsense knowledge contained in contextualized representations, which is crucial for human question answering and reading comprehension. We study the commonsense ability of GPT, BERT, XLNet, and RoBERTa by testing them on seven challenging benchmarks, finding that language modeling and its variants are effective objectives for promoting models commonsense ability while bi-directional context and larger training set are bonuses. We additionally find that current models do poorly on tasks require more necessary inference steps. Finally, we test the robustness of models by making dual test cases, which are correlated so that the correct prediction of one sample should lead to correct prediction of the other. Interestingly, the models show confusion on these test cases, which suggests that they learn commonsense at the surface rather than the deep level. We release a test set, named CATs publicly, for future research.
114 - Yujia Qin , Yankai Lin , Jing Yi 2021
Recent explorations of large-scale pre-trained language models (PLMs) such as GPT-3 have revealed the power of PLMs with huge amounts of parameters, setting off a wave of training ever-larger PLMs. However, training a large-scale PLM requires tremend ous amounts of computational resources, which is time-consuming and expensive. In addition, existing large-scale PLMs are mainly trained from scratch individually, ignoring the availability of many existing well-trained PLMs. To this end, we explore the question that how can previously trained PLMs benefit training larger PLMs in future. Specifically, we introduce a novel pre-training framework named knowledge inheritance (KI), which combines both self-learning and teacher-guided learning to efficiently train larger PLMs. Sufficient experimental results demonstrate the feasibility of our KI framework. We also conduct empirical analyses to explore the effects of teacher PLMs pre-training settings, including model architecture, pre-training data, etc. Finally, we show that KI can well support lifelong learning and knowledge transfer.
118 - Boliang Zhang , Ajay Nagesh , 2020
Web-crawled data provides a good source of parallel corpora for training machine translation models. It is automatically obtained, but extremely noisy, and recent work shows that neural machine translation systems are more sensitive to noise than tra ditional statistical machine translation methods. In this paper, we propose a novel approach to filter out noisy sentence pairs from web-crawled corpora via pre-trained language models. We measure sentence parallelism by leveraging the multilingual capability of BERT and use the Generative Pre-training (GPT) language model as a domain filter to balance data domains. We evaluate the proposed method on the WMT 2018 Parallel Corpus Filtering shared task, and on our own web-crawled Japanese-Chinese parallel corpus. Our method significantly outperforms baselines and achieves a new state-of-the-art. In an unsupervised setting, our method achieves comparable performance to the top-1 supervised method. We also evaluate on a web-crawled Japanese-Chinese parallel corpus that we make publicly available.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا