ﻻ يوجد ملخص باللغة العربية
A $k$-submodular function is a function that given $k$ disjoint subsets outputs a value that is submodular in every orthant. In this paper, we provide a new framework for $k$-submodular maximization problems, by relaxing the optimization to the continuous space with the multilinear extension of $k$-submodular functions and a variant of pipage rounding that recovers the discrete solution. The multilinear extension introduces new techniques to analyze and optimize $k$-submodular functions. When the function is monotone, we propose almost $frac{1}{2}$-approximation algorithms for unconstrained maximization and maximization under total size and knapsack constraints. For unconstrained monotone and non-monotone maximization, we propose an algorithm that is almost as good as any combinatorial algorithm based on Iwata, Tanigawa, and Yoshidas meta-framework ($frac{k}{2k-1}$-approximation for the monotone case and $frac{k^2+1}{2k^2+1}$-approximation for the non-monotone case).
We study the problem of maximizing a monotone $k$-submodular function $f$ under a knapsack constraint, where a $k$-submodular function is a natural generalization of a submodular function to $k$ dimensions. We present a deterministic $(frac12-frac{1}
The problem of maximizing a non-negative submodular function was introduced by Feige, Mirrokni, and Vondrak [FOCS07] who provided a deterministic local-search based algorithm that guarantees an approximation ratio of $frac 1 3$, as well as a randomiz
Motivated by applications in machine learning, such as subset selection and data summarization, we consider the problem of maximizing a monotone submodular function subject to mixed packing and covering constraints. We present a tight approximation a
As the scales of data sets expand rapidly in some application scenarios, increasing efforts have been made to develop fast submodular maximization algorithms. This paper presents a currently the most efficient algorithm for maximizing general non-neg
Given a separation oracle $mathsf{SO}$ for a convex function $f$ that has an integral minimizer inside a box with radius $R$, we show how to find an exact minimizer of $f$ using at most (a) $O(n (n + log(R)))$ calls to $mathsf{SO}$ and $mathsf{poly}(