ترغب بنشر مسار تعليمي؟ اضغط هنا

Human Activity and Mobility Data Reveal Disparities in Exposure Risk Reduction Indicators among Socially Vulnerable Populations during COVID-19

196   0   0.0 ( 0 )
 نشر من قبل Natalie Coleman
 تاريخ النشر 2021
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-pharmacologic interventions (NPIs) are one method to mitigate the spread and effects of the COVID-19 pandemic in the United States. NPIs promote protective actions to reduce exposure risk and can reduce mobility patterns within communities. Growing research literature suggests that socially vulnerable populations are disproportionately impacted with higher infection and higher fatality rates of COVID-19, though there is limited understanding of the underlying mechanisms to this health disparity. Thus, the research examines two distinct and complimentary datasets at a granular scale for five urban locations. Through statistical and spatial analyses, the research extensively investigates the exposure risk reduction of socially vulnerable populations due to NPIs. The mobility dataset tracks population movement across ZIP codes; it is used for an origin-destination network analysis. The population activity dataset is based on the number of visits from census block groups (CBG) to points of interest (POIs), such as grocery stores, restaurants, education centers, and medical facilities; it is used for network analysis of population-facilities interactions. The mobility dataset showed that, after the implementation of NPIs, socially vulnerable populations engaged in increased mobility in the form of inflow between ZIP code areas. Similarly, population activity analysis showed an increased exposure risk for socially vulnerable populations based on a greater number of inflow visits of CBGs to POIs, which increases the risk of contact at POIs, and a greater number of outflow visits from POIs to home CBGs, which increases risk of transmission within CBGs. These findings can assist emergency planners and public health officials in comprehending how different groups are able to implement protective actions and can inform more equitable and data-driven NPI policies for future epidemics.



قيم البحث

اقرأ أيضاً

In March of this year, COVID-19 was declared a pandemic and it continues to threaten public health. This global health crisis imposes limitations on daily movements, which have deteriorated every sector in our society. Understanding public reactions to the virus and the non-pharmaceutical interventions should be of great help to fight COVID-19 in a strategic way. We aim to provide tangible evidence of the human mobility trends by comparing the day-by-day variations across the U.S. Large-scale public mobility at an aggregated level is observed by leveraging mobile device location data and the measures related to social distancing. Our study captures spatial and temporal heterogeneity as well as the sociodemographic variations regarding the pandemic propagation and the non-pharmaceutical interventions. All mobility metrics adapted capture decreased public movements after the national emergency declaration. The population staying home has increased in all states and becomes more stable after the stay-at-home order with a smaller range of fluctuation. There exists overall mobility heterogeneity between the income or population density groups. The public had been taking active responses, voluntarily staying home more, to the in-state confirmed cases while the stay-at-home orders stabilize the variations. The study suggests that the public mobility trends conform with the government message urging to stay home. We anticipate our data-driven analysis offers integrated perspectives and serves as evidence to raise public awareness and, consequently, reinforce the importance of social distancing while assisting policymakers.
143 - Xinyu Gao , Chao Fan , Yang Yang 2020
The spread of pandemics such as COVID-19 is strongly linked to human activities. The objective of this paper is to specify and examine early indicators of disease spread risk in cities during the initial stages of outbreak based on patterns of human activities obtained from digital trace data. In this study, the Venables distance (D_v), and the activity density (D_a) are used to quantify and evaluate human activities for 193 US counties, whose cumulative number of confirmed cases was greater than 100 as of March 31, 2020. Venables distance provides a measure of the agglomeration of the level of human activities based on the average distance of human activities across a city or a county (less distance could lead to a greater contact risk). Activity density provides a measure of level of overall activity level in a county or a city (more activity could lead to a greater risk). Accordingly, Pearson correlation analysis is used to examine the relationship between the two human activity indicators and the basic reproduction number in the following weeks. The results show statistically significant correlations between the indicators of human activities and the basic reproduction number in all counties, as well as a significant leader-follower relationship (time lag) between them. The results also show one to two weeks lag between the change in activity indicators and the decrease in the basic reproduction number. This result implies that the human activity indicators provide effective early indicators for the spread risk of the pandemic during the early stages of the outbreak. Hence, the results could be used by the authorities to proactively assess the risk of disease spread by monitoring the daily Venables distance and activity density in a proactive manner.
Major disasters such as extreme weather events can magnify and exacerbate pre-existing social disparities, with disadvantaged populations bearing disproportionate costs. Despite the implications for equity and emergency planning, we lack a quantitati ve understanding of how these social fault lines translate to different behaviors in large-scale emergency contexts. Here we investigate this problem in the context of Hurricane Harvey, using over 30 million anonymized GPS records from over 150,000 opted-in users in the Greater Houston Area to quantify patterns of disaster-inflicted relocation activities before, during, and after the shock. We show that evacuation distance is highly homogenous across individuals from different types of neighborhoods classified by race and wealth, obeying a truncated power-law distribution. Yet here the similarities end: we find that both race and wealth strongly impact evacuation patterns, with disadvantaged minority populations less likely to evacuate than wealthier white residents. Finally, there are considerable discrepancies in terms of departure and return times by race and wealth, with strong social cohesion among evacuees from advantaged neighborhoods in their destination choices. These empirical findings bring new insights into mobility and evacuations, providing policy recommendations for residents, decision makers, and disaster managers alike.
Understanding influencing factors is essential for the surveillance and prevention of infectious diseases, and the factors are likely to vary spatially and temporally as the disease progresses. Taking daily cases and deaths data during the coronaviru s disease 2019 (COVID-19) outbreak in the U.S. as a case study, we develop a mobility-augmented geographically and temporally weighted regression (M-GTWR) model to quantify the spatiotemporal impacts of social-demographic factors and human activities on the COVID-19 dynamics. Different from the base GTWR model, we incorporate a mobility-adjusted distance weight matrix where travel mobility is used in addition to the spatial adjacency to capture the correlations among local observations. The model residuals suggest that the proposed model achieves a substantial improvement over other benchmark methods in addressing the spatiotemporal nonstationarity. Our results reveal that the impacts of social-demographic and human activity variables present significant spatiotemporal heterogeneity. In particular, a 1% increase in population density may lead to 0.63% and 0.71% more daily cases and deaths, and a 1% increase in the mean commuting time may result in 0.22% and 0.95% increases in daily cases and deaths. Although increased human activities will, in general, intensify the disease outbreak, we report that the effects of grocery and pharmacy-related activities are insignificant in areas with high population density. And activities at the workplace and public transit are found to either increase or decrease the number of cases and deaths, depending on particular locations. The results of our study establish a quantitative framework for identifying influencing factors during a disease outbreak, and the obtained insights may have significant implications in guiding the policy-making against infectious diseases.
Using smartphone location data from Colombia, Mexico, and Indonesia, we investigate how non-pharmaceutical policy interventions intended to mitigate the spread of the COVID-19 pandemic impact human mobility. In all three countries, we find that follo wing the implementation of mobility restriction measures, human movement decreased substantially. Importantly, we also uncover large and persistent differences in mobility reduction between wealth groups: on average, users in the top decile of wealth reduced their mobility up to twice as much as users in the bottom decile. For decision-makers seeking to efficiently allocate resources to response efforts, these findings highlight that smartphone location data can be leveraged to tailor policies to the needs of specific socioeconomic groups, especially the most vulnerable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا