ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic order and its interplay with structure phase transition in van der Waals ferromagnet VI$_3$

163   0   0.0 ( 0 )
 نشر من قبل Yiqing Hao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Van der Waals magnet VI$_3$ demonstrates intriguing magnetic properties that render it great for use in various applications. However, its microscopic magnetic structure has not been determined yet. Here, we report neutron diffraction and susceptibility measurements in VI$_3$ that revealed a ferromagnetic order with the moment direction tilted from the $c$-axis by ~36{deg} at 4 K. A spin reorientation accompanied by a structure distortion within the honeycomb plane is observed at a temperature of ~27 K, before the magnetic order completely disappears at $T_C$ = 50 K. The refined magnetic moment of ~1.3 $mu_B$ at 4 K is considerably lower than the fully ordered spin moment of 2 $mu_B$/ V$^{3+}$, suggesting the presence of a considerable orbital moment antiparallel to the spin moment and strong spin-orbit coupling in VI$_3$. This results in strong magnetoelastic interactions that make the magnetic properties of VI$_3$ easily tunable via strain and pressure.



قيم البحث

اقرأ أيضاً

The magnetic structure and phase diagram of the layered ferromagnetic compound Fe$_3$GeTe$_2$ has been investigated by a combination of synthesis, x-ray and neutron diffraction, high resolution microscopy, and magnetization measurements. Single cryst als were synthesized by self-flux reactions, and single crystal neutron diffraction finds ferromagnetic order with moments of 1.11(5)$mu_B$/Fe aligned along the $c$-axis at 4K. These flux-grown crystals have a lower Curie temperature $T_{textrm{c}}approx$150K compared to crystals previously grown by vapor transport ($T_{textrm{c}}$=220K). The difference is a reduced Fe content in the flux grown crystals, as illustrated by the behavior observed in a series of polycrystalline samples. As Fe-content decreases, so does the Curie temperature, magnetic anisotropy, and net magnetization. In addition, Hall effect and thermoelectric measurements on flux-grown crystals suggest multiple carrier types contribute to electrical transport in Fe$_{3-x}$GeTe$_2$ and structurally-similar Ni$_{3-x}$GeTe$_2$.
Layered van-der-Waals 2D magnetic materials are of great interest in fundamental condensed-matter physics research, as well as for potential applications in spintronics and device physics. We present neutron powder diffraction data using new ultra-hi gh-pressure techniques to measure the magnetic structure of Mott-insulating 2D honeycomb antiferromagnet FePS$_3$ at pressures up to 183 kbar and temperatures down to 80 K. These data are complemented by high-pressure magnetometry and reverse Monte Carlo modeling of the spin configurations. As pressure is applied, the previously-measured ambient-pressure magnetic order switches from an antiferromagnetic to a ferromagnetic interplanar interaction, and from 2D-like to 3D-like character. The overall antiferromagnetic structure within the $ab$ planes, ferromagnetic chains antiferromagnetically coupled, is preserved, but the magnetic propagation vector is altered from $(0:1:frac{1}{2})$ to $(0:1:0)$, a halving of the magnetic unit cell size. At higher pressures, coincident with the second structural transition and the insulator-metal transition in this compound, we observe a suppression of this long-range-order and emergence of a form of magnetic short-range order which survives above room temperature. Reverse Monte Carlo fitting suggests this phase to be a short-ranged version of the original ambient pressure structure - with a return to antiferromagnetic interplanar correlations. The persistence of magnetism well into the HP-II metallic state is an observation in seeming contradiction with previous x-ray spectroscopy results which suggest a spin-crossover transition.
Using a combination of density functional theory (DFT) and spin-wave theory methods, we investigate the magnetic interactions and spin excitations in semiconducting VI$_3$. Exchange parameters of monolayer, bilayer, and bulk forms are evaluated by ma pping the magnetic energies of various spin configurations, calculated using DFT+$U$, onto the Heisenberg model. The intralayer couplings remain largely unchanged in three forms of VI$_3$, while the interlayer couplings show stronger dependence on the dimensionality of the materials. We calculate the spin-wave spectra within a linear spin-wave theory and discuss how various exchange parameters affect the magnon bands. The magnon-magnon interaction is further incorporated, and the Curie temperature is estimated using a self-consistently renormalized spin-wave theory. To understand the roles of constituent atoms on magnetocrystalline anisotropy energy (MAE), we resolve MAE into sublattices and find that a strong negative V-I inter-sublattice contribution is responsible for the relatively small easy-axis MAE in VI$_3$.
We present comprehensive measurements of the structural, magnetic and electronic properties of layered van-der-Waals ferromagnet VI$_3$ down to low temperatures. Despite belonging to a well studied family of transition metal trihalides, this material has received very little attention. We outline, from high-resolution powder x-ray diffraction measurements, a corrected room-temperature crystal structure to that previously proposed and uncover a structural transition at 79 K, also seen in the heat capacity. Magnetization measurements confirm VI$_3$ to be a hard ferromagnet (9.1 kOe coercive field at 2 K) with a high degree of anisotropy, and the pressure dependence of the magnetic properties provide evidence for the two-dimensional nature of the magnetic order. Optical and electrical transport measurements show this material to be an insulator with an optical band gap of 0.67 eV - the previous theoretical predictions of d-band metallicity then lead us to believe VI$_3$ to be a correlated Mott insulator. Our latest band structure calculations support this picture and show good agreement with the experimental data. We suggest VI$_3$ to host great potential in the thriving field of low-dimensional magnetism and functional materials, together with opportunities to study and make use of low-dimensional Mott physics.
Ferromagnetic van der Waals (vdW) insulators are of great scientific interest for their promising applications in spintronics. It has been indicated that in the two materials within this class, CrI$_3$ and VI$_3$, the magnetic ground state, the band gap, and the Fermi level could be manipulated by varying the layer thickness, strain or doping. To understand how these factors impact the properties, a detailed understanding of the electronic structure would be required. However, the experimental studies of the electronic structure of these materials are still very sparse. Here, we present the detailed electronic structure of CrI$_3$ and VI$_3$ measured by angle-resolved photoemission spectroscopy (ARPES). Our results show a band-gap of the order of 1 eV, sharply contrasting some theoretical predictions such as Dirac half-metallicity and metallic phases, indicating that the intra-atomic interaction parameter (U) and spin-orbit coupling (SOC) were not properly accounted for in the calculations. We also find significant differences in the electronic properties of these two materials, in spite of similarities in their crystal structure. In CrI$_3$, the valence band maximum is dominated by the I 5{it p}, whereas in VI$_3$ it is dominated by the V 3{it d} derived states. Our results represent valuable input for further improvements in the theoretical modeling of these systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا