ﻻ يوجد ملخص باللغة العربية
We present comprehensive measurements of the structural, magnetic and electronic properties of layered van-der-Waals ferromagnet VI$_3$ down to low temperatures. Despite belonging to a well studied family of transition metal trihalides, this material has received very little attention. We outline, from high-resolution powder x-ray diffraction measurements, a corrected room-temperature crystal structure to that previously proposed and uncover a structural transition at 79 K, also seen in the heat capacity. Magnetization measurements confirm VI$_3$ to be a hard ferromagnet (9.1 kOe coercive field at 2 K) with a high degree of anisotropy, and the pressure dependence of the magnetic properties provide evidence for the two-dimensional nature of the magnetic order. Optical and electrical transport measurements show this material to be an insulator with an optical band gap of 0.67 eV - the previous theoretical predictions of d-band metallicity then lead us to believe VI$_3$ to be a correlated Mott insulator. Our latest band structure calculations support this picture and show good agreement with the experimental data. We suggest VI$_3$ to host great potential in the thriving field of low-dimensional magnetism and functional materials, together with opportunities to study and make use of low-dimensional Mott physics.
We report structural, physical properties and electronic structure of van der Waals (vdW) crystal VI3. Detailed analysis reveals that VI3 exhibits a structural transition from monoclinic C2/m to rhombohedral R-3 at Ts ~ 79 K, similar to CrX3 (X = Cl,
Evolution of magnetism in single crystals of the van der Waals compound VI3 in external pressure up to 7.3 GPa studied by measuring magnetization and ac magnetic susceptibility is reported. Four magnetic phase transitions, at T1 = 54.5 K, T2 = 53 K,
The magnetic structure and phase diagram of the layered ferromagnetic compound Fe$_3$GeTe$_2$ has been investigated by a combination of synthesis, x-ray and neutron diffraction, high resolution microscopy, and magnetization measurements. Single cryst
Van der Waals magnet VI$_3$ demonstrates intriguing magnetic properties that render it great for use in various applications. However, its microscopic magnetic structure has not been determined yet. Here, we report neutron diffraction and susceptibil
The recent isolation of two-dimensional van der Waals magnetic materials has uncovered rich physics that often differs from the magnetic behaviour of their bulk counterparts. However, the microscopic details of fundamental processes such as the initi