ترغب بنشر مسار تعليمي؟ اضغط هنا

Shapes of Milky-Way-Mass Galaxies with Self-Interacting Dark Matter

120   0   0.0 ( 0 )
 نشر من قبل Drona Vargya
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Self-interacting dark matter (SIDM) models offer one way to reconcile inconsistencies between observations and predictions from collisionless cold dark matter (CDM) models on dwarf-galaxy scales. In order to incorporate the effects of both baryonic and SIDM interactions, we study a suite of cosmological-baryonic simulations of Milky-Way (MW)-mass galaxies from the Feedback in Realistic Environments (FIRE-2) project where we vary the SIDM self-interaction cross-section $sigma/m$. We compare the shape of the main dark matter (DM) halo at redshift $z=0$ predicted by SIDM simulations (at $sigma/m=0.1$, $1$, and $10$ cm$^2$ g$^{-1}$) with CDM simulations using the same initial conditions. In the presence of baryonic feedback effects, we find that SIDM models do not produce the large differences in the inner structure of MW-mass galaxies predicted by SIDM-only models. However, we do find that the radius where the shape of the total mass distribution begins to differ from that of the stellar mass distribution is dependent on $sigma/m$. This transition could potentially be used to set limits on the SIDM cross-section in the MW.


قيم البحث

اقرأ أيضاً

171 - M. Kuhlen 2009
The unambiguous detection of Galactic dark matter annihilation would unravel one of the most outstanding puzzles in particle physics and cosmology. Recent observations have motivated models in which the annihilation rate is boosted by the Sommerfeld effect, a non-perturbative enhancement arising from a long range attractive force. Here we apply the Sommerfeld correction to Via Lactea II, a high resolution N-body simulation of a Milky-Way-size galaxy, to investigate the phase-space structure of the Galactic halo. We show that the annihilation luminosity from kinematically cold substructure can be enhanced by orders of magnitude relative to previous calculations, leading to the prediction of gamma-ray fluxes from up to hundreds of dark clumps that should be detectable by the Fermi satellite.
Self-interacting dark matter provides a promising alternative for the cold dark matter paradigm to solve potential small-scale galaxy formation problems. Nearly all self-interacting dark matter simulations so far have considered only elastic collisio ns. Here we present simulations of a galactic halo within a generic inelastic model using a novel numerical implementation in the Arepo code to study arbitrary multi-state inelastic dark matter scenarios. For this model we find that inelastic self-interactions can: (i) create larger subhalo density cores compared to elastic models for the same cross section normalisation; (ii) lower the abundance of satellites without the need for a power spectrum cutoff; (iii) reduce the total halo mass by about 10%; (iv) inject the energy equivalent of O(100) million Type II supernovae in galactic haloes through level de-excitation; (v) avoid the gravothermal catastrophe due to removal of particles from halo centers. We conclude that a ~5 times larger elastic cross section is required to achieve the same central density reduction as the inelastic model. This implies that well-established constraints on self-interacting cross sections have to be revised if inelastic collisions are the dominant mode. In this case significantly smaller cross sections can achieve the same core density reduction thereby increasing the parameter space of allowed models considerably.
170 - Wenting Wang 2015
The mass of the dark matter halo of the Milky Way can be estimated by fitting analytical models to the phase-space distribution of dynamical tracers. We test this approach using realistic mock stellar halos constructed from the Aquarius N-body simula tions of dark matter halos in the $Lambda$CDM cosmology. We extend the standard treatment to include a Navarro-Frenk-White (NFW) potential and use a maximum likelihood method to recover the parameters describing the simulated halos from the positions and velocities of their mock halo stars. We find that the estimate of halo mass is highly correlated with the estimate of halo concentration. The best-fit halo masses within the virial radius, $R_{200}$, are biased, ranging from a 40% underestimate to a 5% overestimate in the best case (when the tangential velocities of the tracers are included). There are several sources of bias. Deviations from dynamical equilibrium can potentially cause significant bias; deviations from spherical symmetry are relatively less important. Fits to stars at different galactocentric radii can give different mass estimates. By contrast, the model gives good constraints on the mass within the half-mass radius of tracers even when restricted to tracers within 60kpc. The recovered velocity anisotropies of tracers, $beta$, are biased systematically, but this does not affect other parameters if tangential velocity data are used as constraints.
Cold Dark Matter (CDM) theory, a pillar of modern cosmology and astrophysics, predicts the existence of a large number of starless dark matter halos surrounding the Milky Way (MW). However, clear observational evidence of these dark substructures rem ains elusive. Here, we present a detection method based on the small, but detectable, velocity changes that an orbiting substructure imposes on the stars in the MW disk. Using high-resolution numerical simulations we estimate that the new space telescope Gaia should detect the kinematic signatures of a few starless substructures provided the CDM paradigm holds. Such a measurement will provide unprecedented constraints on the primordial matter power spectrum at low-mass scales and offer a new handle onto the particle physics properties of dark matter.
This paper presents an alternative scenario to explain the observed properties of the Milky Way dwarf Spheroidals (MW dSphs). We show that instead of resulting from large amounts of dark matter (DM), the large velocity dispersions observed along thei r lines of sight can be entirely accounted for by dynamical heating of DM-free systems resulting from MW tidal shocks. Such a regime is expected if the progenitors of the MW dwarfs are infalling gas-dominated galaxies. In this case, gas lost through ram-pressure leads to a strong decrease of self-gravity, a phase during which stars can radially expand, while leaving a gas-free dSph in which tidal shocks can easily develop. The DM content of dSphs is widely derived from the measurement of the dSphs self-gravity acceleration projected along the line of sight. We show that the latter strongly anti-correlates with the dSph distance from the MW, and that it is matched in amplitude by the acceleration caused by MW tidal shocks on DM-free dSphs. If correct, this implies that the MW dSphs would have negligible DM content, putting in question, e.g., their use as targets for DM direct searches, or our understanding of the Local Group mass assembly history. Most of the progenitors of the MW dSphs are likely extremely tiny dIrrs, and deeper observations and more accurate modeling are necessary to infer their properties as well as to derive star formation histories of the faintest dSphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا