ترغب بنشر مسار تعليمي؟ اضغط هنا

On Designing Good Representation Learning Models

152   0   0.0 ( 0 )
 نشر من قبل Qinglin Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of representation learning is different from the ultimate objective of machine learning such as decision making, it is therefore very difficult to establish clear and direct objectives for training representation learning models. It has been argued that a good representation should disentangle the underlying variation factors, yet how to translate this into training objectives remains unknown. This paper presents an attempt to establish direct training criterions and design principles for developing good representation learning models. We propose that a good representation learning model should be maximally expressive, i.e., capable of distinguishing the maximum number of input configurations. We formally define expressiveness and introduce the maximum expressiveness (MEXS) theorem of a general learning model. We propose to train a model by maximizing its expressiveness while at the same time incorporating general priors such as model smoothness. We present a conscience competitive learning algorithm which encourages the model to reach its MEXS whilst at the same time adheres to model smoothness prior. We also introduce a label consistent training (LCT) technique to boost model smoothness by encouraging it to assign consistent labels to similar samples. We present extensive experimental results to show that our method can indeed design representation learning models capable of developing representations that are as good as or better than state of the art. We also show that our technique is computationally efficient, robust against different parameter settings and can work effectively on a variety of datasets. Code available at https://github.com/qlilx/odgrlm.git

قيم البحث

اقرأ أيضاً

Recent deep learning approaches for representation learning on graphs follow a neighborhood aggregation procedure. We analyze some important properties of these models, and propose a strategy to overcome those. In particular, the range of neighboring nodes that a nodes representation draws from strongly depends on the graph structure, analogous to the spread of a random walk. To adapt to local neighborhood properties and tasks, we explore an architecture -- jumping knowledge (JK) networks -- that flexibly leverages, for each node, different neighborhood ranges to enable better structure-aware representation. In a number of experiments on social, bioinformatics and citation networks, we demonstrate that our model achieves state-of-the-art performance. Furthermore, combining the JK framework with models like Graph Convolutional Networks, GraphSAGE and Graph Attention Networks consistently improves those models performance.
Continual learning aims to improve the ability of modern learning systems to deal with non-stationary distributions, typically by attempting to learn a series of tasks sequentially. Prior art in the field has largely considered supervised or reinforc ement learning tasks, and often assumes full knowledge of task labels and boundaries. In this work, we propose an approach (CURL) to tackle a more general problem that we will refer to as unsupervised continual learning. The focus is on learning representations without any knowledge about task identity, and we explore scenarios when there are abrupt changes between tasks, smooth transitions from one task to another, or even when the data is shuffled. The proposed approach performs task inference directly within the model, is able to dynamically expand to capture new concepts over its lifetime, and incorporates additional rehearsal-based techniques to deal with catastrophic forgetting. We demonstrate the efficacy of CURL in an unsupervised learning setting with MNIST and Omniglot, where the lack of labels ensures no information is leaked about the task. Further, we demonstrate strong performance compared to prior art in an i.i.d setting, or when adapting the technique to supervised tasks such as incremental class learning.
Deep learning algorithms mine knowledge from the training data and thus would likely inherit the datasets bias information. As a result, the obtained model would generalize poorly and even mislead the decision process in real-life applications. We pr opose to remove the bias information misused by the target task with a cross-sample adversarial debiasing (CSAD) method. CSAD explicitly extracts target and bias features disentangled from the latent representation generated by a feature extractor and then learns to discover and remove the correlation between the target and bias features. The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator. Moreover, we propose joint content and local structural representation learning to boost mutual information estimation for better performance. We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
Federated learning (FL) is a popular distributed learning framework that can reduce privacy risks by not explicitly sharing private data. However, recent works demonstrated that sharing model updates makes FL vulnerable to inference attacks. In this work, we show our key observation that the data representation leakage from gradients is the essential cause of privacy leakage in FL. We also provide an analysis of this observation to explain how the data presentation is leaked. Based on this observation, we propose a defense against model inversion attack in FL. The key idea of our defense is learning to perturb data representation such that the quality of the reconstructed data is severely degraded, while FL performance is maintained. In addition, we derive certified robustness guarantee to FL and convergence guarantee to FedAvg, after applying our defense. To evaluate our defense, we conduct experiments on MNIST and CIFAR10 for defending against the DLG attack and GS attack. Without sacrificing accuracy, the results demonstrate that our proposed defense can increase the mean squared error between the reconstructed data and the raw data by as much as more than 160X for both DLG attack and GS attack, compared with baseline defense methods. The privacy of the FL system is significantly improved.
We propose a novel end-to-end neural network architecture that, once trained, directly outputs a probabilistic clustering of a batch of input examples in one pass. It estimates a distribution over the number of clusters $k$, and for each $1 leq k leq k_mathrm{max}$, a distribution over the individual cluster assignment for each data point. The network is trained in advance in a supervised fashion on separate data to learn grouping by any perceptual similarity criterion based on pairwise labels (same/different group). It can then be applied to different data containing different groups. We demonstrate promising performance on high-dimensional data like images (COIL-100) and speech (TIMIT). We call this ``learning to cluster and show its conceptual difference to deep metric learning, semi-supervise clustering and other related approaches while having the advantage of performing learnable clustering fully end-to-end.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا