ترغب بنشر مسار تعليمي؟ اضغط هنا

Automated Learning Rate Scheduler for Large-batch Training

142   0   0.0 ( 0 )
 نشر من قبل Chiheon Kim
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Large-batch training has been essential in leveraging large-scale datasets and models in deep learning. While it is computationally beneficial to use large batch sizes, it often requires a specially designed learning rate (LR) schedule to achieve a comparable level of performance as in smaller batch training. Especially, when the number of training epochs is constrained, the use of a large LR and a warmup strategy is critical in the final performance of large-batch training due to the reduced number of updating steps. In this work, we propose an automated LR scheduling algorithm which is effective for neural network training with a large batch size under the given epoch budget. In specific, the whole schedule consists of two phases: adaptive warmup and predefined decay, where the LR is increased until the training loss no longer decreases and decreased to zero until the end of training. Here, whether the training loss has reached the minimum value is robustly checked with Gaussian process smoothing in an online manner with a low computational burden. Coupled with adaptive stochastic optimizers such as AdamP and LAMB, the proposed scheduler successfully adjusts the LRs without cumbersome hyperparameter tuning and achieves comparable or better performances than tuned baselines on various image classification benchmarks and architectures with a wide range of batch sizes.



قيم البحث

اقرأ أيضاً

Large-batch training has become a commonly used technique when training neural networks with a large number of GPU/TPU processors. As batch size increases, stochastic optimizers tend to converge to sharp local minima, leading to degraded test perform ance. Current methods usually use extensive data augmentation to increase the batch size, but we found the performance gain with data augmentation decreases as batch size increases, and data augmentation will become insufficient after certain point. In this paper, we propose to use adversarial learning to increase the batch size in large-batch training. Despite being a natural choice for smoothing the decision surface and biasing towards a flat region, adversarial learning has not been successfully applied in large-batch training since it requires at least two sequential gradient computations at each step, which will at least double the running time compared with vanilla training even with a large number of processors. To overcome this issue, we propose a novel Concurrent Adversarial Learning (ConAdv) method that decouple the sequential gradient computations in adversarial learning by utilizing staled parameters. Experimental results demonstrate that ConAdv can successfully increase the batch size on both ResNet-50 and EfficientNet training on ImageNet while maintaining high accuracy. In particular, we show ConAdv along can achieve 75.3% top-1 accuracy on ImageNet ResNet-50 training with 96K batch size, and the accuracy can be further improved to 76.2% when combining ConAdv with data augmentation. This is the first work successfully scales ResNet-50 training batch size to 96K.
91 - Di Zhang , Dong Dai , Youbiao He 2019
Today high-performance computing (HPC) platforms are still dominated by batch jobs. Accordingly, effective batch job scheduling is crucial to obtain high system efficiency. Existing HPC batch job schedulers typically leverage heuristic priority funct ions to prioritize and schedule jobs. But, once configured and deployed by the experts, such priority functions can hardly adapt to the changes of job loads, optimization goals, or system settings, potentially leading to degraded system efficiency when changes occur. To address this fundamental issue, we present RLScheduler, an automated HPC batch job scheduler built on reinforcement learning. RLScheduler relies on minimal manual interventions or expert knowledge, but can learn high-quality scheduling policies via its own continuous trial and error. We introduce a new kernel-based neural network structure and trajectory filtering mechanism in RLScheduler to improve and stabilize the learning process. Through extensive evaluations, we confirm that RLScheduler can learn high-quality scheduling policies towards various workloads and various optimization goals with relatively low computation cost. Moreover, we show that the learned models perform stably even when applied to unseen workloads, making them practical for production use.
Large-batch training approaches have enabled researchers to utilize large-scale distributed processing and greatly accelerate deep-neural net (DNN) training. For example, by scaling the batch size from 256 to 32K, researchers have been able to reduce the training time of ResNet50 on ImageNet from 29 hours to 2.2 minutes (Ying et al., 2018). In this paper, we propose a new approach called linear-epoch gradual-warmup (LEGW) for better large-batch training. With LEGW, we are able to conduct large-batch training for both CNNs and RNNs with the Sqrt Scaling scheme. LEGW enables Sqrt Scaling scheme to be useful in practice and as a result we achieve much better results than the Linear Scaling learning rate scheme. For LSTM applications, we are able to scale the batch size by a factor of 64 without losing accuracy and without tuning the hyper-parameters. For CNN applications, LEGW is able to achieve the same accuracy even as we scale the batch size to 32K. LEGW works better than previous large-batch auto-tuning techniques. LEGW achieves a 5.3X average speedup over the baselines for four LSTM-based applications on the same hardware. We also provide some theoretical explanations for LEGW.
The stochastic gradient descent (SGD) method and its variants are algorithms of choice for many Deep Learning tasks. These methods operate in a small-batch regime wherein a fraction of the training data, say $32$-$512$ data points, is sampled to comp ute an approximation to the gradient. It has been observed in practice that when using a larger batch there is a degradation in the quality of the model, as measured by its ability to generalize. We investigate the cause for this generalization drop in the large-batch regime and present numerical evidence that supports the view that large-batch methods tend to converge to sharp minimizers of the training and testing functions - and as is well known, sharp minima lead to poorer generalization. In contrast, small-batch methods consistently converge to flat minimizers, and our experiments support a commonly held view that this is due to the inherent noise in the gradient estimation. We discuss several strategies to attempt to help large-batch methods eliminate this generalization gap.
The scale of deep learning nowadays calls for efficient distributed training algorithms. Decentralized momentum SGD (DmSGD), in which each node averages only with its neighbors, is more communication efficient than vanilla Parallel momentum SGD that incurs global average across all computing nodes. On the other hand, the large-batch training has been demonstrated critical to achieve runtime speedup. This motivates us to investigate how DmSGD performs in the large-batch scenario. In this work, we find the momentum term can amplify the inconsistency bias in DmSGD. Such bias becomes more evident as batch-size grows large and hence results in severe performance degradation. We next propose DecentLaM, a novel decentralized large-batch momentum SGD to remove the momentum-incurred bias. The convergence rate for both non-convex and strongly-convex scenarios is established. Our theoretical results justify the superiority of DecentLaM to DmSGD especially in the large-batch scenario. Experimental results on a variety of computer vision tasks and models demonstrate that DecentLaM promises both efficient and high-quality training.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا