ﻻ يوجد ملخص باللغة العربية
Pooled testing offers an efficient solution to the unprecedented testing demands of the COVID-19 pandemic, although with potentially lower sensitivity and increased costs to implementation in some settings. Assessments of this trade-off typically assume pooled specimens are independent and identically distributed. Yet, in the context of COVID-19, these assumptions are often violated: testing done on networks (housemates, spouses, co-workers) captures correlated individuals, while infection risk varies substantially across time, place and individuals. Neglecting dependencies and heterogeneity may bias established optimality grids and induce a sub-optimal implementation of the procedure. As a lesson learned from this pandemic, this paper highlights the necessity of integrating field sampling information with statistical modeling to efficiently optimize pooled testing. Using real data, we show that (a) greater gains can be achieved at low logistical cost by exploiting natural correlations (non-independence) between samples -- allowing improvements in sensitivity and efficiency of up to 30% and 90% respectively; and (b) these gains are robust despite substantial heterogeneity across pools (non-identical). Our modeling results complement and extend the observations of Barak et al (2021) who report an empirical sensitivity well beyond expectations. Finally, we provide an interactive tool for selecting an optimal pool size using contextual information
When testing for a disease such as COVID-19, the standard method is individual testing: we take a sample from each individual and test these samples separately. An alternative is pooled testing (or group testing), where samples are mixed together in
The problem of skewness is common among clinical trials and survival data which has being the research focus derivation and proposition of different flexible distributions. Thus, a new distribution called Extended Rayleigh Lomax distribution is const
We propose `Tapestry, a novel approach to pooled testing with application to COVID-19 testing with quantitative Reverse Transcription Polymerase Chain Reaction (RT-PCR) that can result in shorter testing time and conservation of reagents and testing
A mathematical model for the COVID-19 pandemic spread, which integrates age-structured Susceptible-Exposed-Infected-Recovered-Deceased dynamics with real mobile phone data accounting for the population mobility, is presented. The dynamical model adju
Following the onset of the COVID-19 pandemic and subsequent lockdowns, software engineers daily life was disrupted and they were abruptly forced into working remotely from home. Across one exploratory and one confirmatory study (N = 482), we tested w