ترغب بنشر مسار تعليمي؟ اضغط هنا

Gate-Assisted Phase Fluctuations in All-Metallic Josephson Junctions

181   0   0.0 ( 0 )
 نشر من قبل Julien Basset
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery that a gate electrode suppresses the supercurrent in purely metallic systems is missing a complete physical understanding of the mechanisms at play. We here study the origin of this reduction in a Superconductor-Normal metal-Superconductor Josephson junction by performing, on the same device, a detailed investigation of the gate-dependent switching probability together with the local tunnelling spectroscopy of the normal metal. We demonstrate that high energy electrons leaking from the gate trigger the reduction of the critical current which is accompanied by an important broadening of the switching histograms. The switching rates are well described by an activation formula including an additional term accounting for the injection of rare high energy electrons from the gate. The rate of electrons obtained from the fit remarkably coincides with the independently measured leakage current. Concomitantly, a negligible elevation of the local temperature is found by tunnelling spectroscopy which excludes overheating scenarios.

قيم البحث

اقرأ أيضاً

Josephson junctions made of closely-spaced conventional superconductors on the surface of 3D topological insulators have been proposed to host Andreev bound states (ABSs) which can include Majorana fermions. Here, we present an extensive study of the supercurrent carried by low energy ABSs in Nb/Bi$_2$Se$_3$/Nb Josephson junctions in various SQUIDs as we modulate the carrier density in the Bi$_2$Se$_3$ barriers through electrostatic top gates. As previously reported, we find a precipitous drop in the Josephson current at a critical value of the voltage applied to the top gate. This drop has been attributed to a transition where the topologically trivial 2DEG at the surface is nearly depleted, causing a shift in the spatial location and change in nature of the helical surface states. We present measurements that support this picture by revealing qualitative changes in the temperature and magnetic field dependence of the critical current across this transition. In particular, we observe pronounced fluctuations in the critical current near total depletion of the 2DEG that demonstrate the dynamical nature of the supercurrent transport through topological low energy ABSs.
In this work we study by numerical methods the phase dynamics in ballistic graphene-based short Josephson junctions. The supercurrent through a graphene junction shows a non-sinusoidal phase-dependence, unlike a conventional junction ruled by the wel l-known d.c. Josephson relation. A superconductor-graphene-superconductor system exhibits superconductive quantum metastable states similar to those present in normal current-biased JJs. We explore the effects of thermal and correlated fluctuations on the escape time from these metastable states, when the system is stimulated by an oscillating bias current. As a first step, the analysis is carried out in the presence of an external Gaussian white noise source, which mimics the random fluctuations of the bias current. Varying the noise intensity, it is possible to analyze the behavior of the escape time from a superconductive metastable state in different temperature regimes. Noise induced phenomena, such as resonant activation and noise induced stability, are observed. The study is extended to the case of a coloured Gaussian noise source, analyzing how the escape time from the metastable state is affected by correlated random fluctuations for different values of the noise correlation time.
The effect of thermal fluctuations in Josephson junctions is usually analysed using the Ambegaokar-Halperin (AH) theory in the context of thermal activation. Enhanced fluctuations, demonstrated by broadening of current-voltage characteristics, have p reviously been found for proximity Josephson junctions. Here we report measurements of micron-scale normal metal loops contacted with thin superconducting electrodes, where the unconventional loop geometry enables tuning of the junction barrier with applied flux; for some geometries, the barrier can be effectively eliminated. Stronger fluctuations are observed when the flux threading the normal metal loop is near an odd half-integer flux quantum, and for devices with thinner superconducting electrodes. These findings suggest that the activation barrier, which is the Josephson coupling energy of the proximity junction, is different from that of conventional Josephson junctions. Simple one dimensional quasiclassical theory can predict the interference effect due to the loop structure, but the exact magnitude of the coupling energy cannot be computed without taking into account the details of the sample dimensions. In this way, the physics of this system is similar to the phase slipping process in thin superconducting wires. Besides shedding light on thermal fluctuations in proximity junctions, the findings here also demonstrate a new type of superconducting interference device with two normal branches sharing the same SN interface on both sides of the device, which has technical advantages for making symmetrical interference devices.
We show that shunt capacitor stabilizes synchronized oscillations in intrinsic Josephson junction stacks biased by DC current. This synchronization mechanism has an effect similar to the previously discussed radiative coupling between junctions, howe ver, it is not defined by the geometry of the stack. It is particularly important in crystals with smaller number of junctions, where radiation coupling is week, and is comparable with the effect of strong super-radiation in crystal with many junctions. The shunt also helps to enter the phase-locked regime in the beginning of oscillations, after switching on the bias current. Shunt may be used to tune radiation power, which drops as shunt capacitance increases.
Magneto-fluctuations of the normal resistance R_N have been reproducibly observed in high critical temp erature superconductor (HTS) grain boundary junctions, at low temperatures. We attribute them to mesoscopic transport in narrow channels across th e grain boundary line. The Thouless energy appears to be the relevant energy scale. Our findings have significant implications on quasiparticle relaxation and coherent transport in HTS grain boundaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا