ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical Gate Tunable Supercurrents in Topological Josephson Junctions

242   0   0.0 ( 0 )
 نشر من قبل Cihan Kurter
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Josephson junctions made of closely-spaced conventional superconductors on the surface of 3D topological insulators have been proposed to host Andreev bound states (ABSs) which can include Majorana fermions. Here, we present an extensive study of the supercurrent carried by low energy ABSs in Nb/Bi$_2$Se$_3$/Nb Josephson junctions in various SQUIDs as we modulate the carrier density in the Bi$_2$Se$_3$ barriers through electrostatic top gates. As previously reported, we find a precipitous drop in the Josephson current at a critical value of the voltage applied to the top gate. This drop has been attributed to a transition where the topologically trivial 2DEG at the surface is nearly depleted, causing a shift in the spatial location and change in nature of the helical surface states. We present measurements that support this picture by revealing qualitative changes in the temperature and magnetic field dependence of the critical current across this transition. In particular, we observe pronounced fluctuations in the critical current near total depletion of the 2DEG that demonstrate the dynamical nature of the supercurrent transport through topological low energy ABSs.



قيم البحث

اقرأ أيضاً

We report transport measurements on Josephson junctions consisting of Bi2Te3 topological insulator (TI) thin films contacted by superconducting Nb electrodes. For a device with junction length L = 134 nm, the critical supercurrent Ic can be modulated by an electrical gate which tunes the carrier type and density of the TI film. Ic can reach a minimum when the TI is near the charge neutrality regime with the Fermi energy lying close to the Dirac point of the surface state. In the p-type regime the Josephson current can be well described by a short ballistic junction model. In the n-type regime the junction is ballistic at 0.7 K < T < 3.8 K while for T < 0.7 K the diffusive bulk modes emerge and contribute a larger Ic than the ballistic model. We attribute the lack of diffusive bulk modes in the p-type regime to the formation of p-n junctions. Our work provides new clues for search of Majorana zero mode in TI-based superconducting devices.
We report experiments on micron-scale normal metal loop connected by superconducting wires, where the sample geometry enables full modulation of the thermal activation barrier with applied magnetic flux, resembling a symmetric quantum interference de vice. We find that except a constant factor of five, the modulation of the barrier can be well fitted by the Ambegaokar-Halperin model for a resistively shunted junction, extended here to a proximity junction with flux-tunable coupling energy estimated using quasiclassical theory. This observation sheds light on the understanding of effect of thermal fluctuation in proximity junctions, while may also lead to an unprecedented level of control in quantum interference devices.
Josephson junctions based on three-dimensional topological insulators offer intriguing possibilities to realize unconventional $p$-wave pairing and Majorana modes. Here, we provide a detailed study of the effect of a uniform magnetization in the norm al region: We show how the interplay between the spin-momentum locking of the topological insulator and an in-plane magnetization parallel to the direction of phase bias leads to an asymmetry of the Andreev spectrum with respect to transverse momenta. If sufficiently large, this asymmetry induces a transition from a regime of gapless, counterpropagating Majorana modes to a regime with unprotected modes that are unidirectional at small transverse momenta. Intriguingly, the magnetization-induced asymmetry of the Andreev spectrum also gives rise to a Josephson Hall effect, that is, the appearance of a transverse Josephson current. The amplitude and current phase relation of the Josephson Hall current are studied in detail. In particular, we show how magnetic control and gating of the normal region can enable sizable Josephson Hall currents compared to the longitudinal Josephson current. Finally, we also propose in-plane magnetic fields as an alternative to the magnetization in the normal region and discuss how the planar Josephson Hall effect could be observed in experiments.
We study the Josephson effect in the multiterminal junction of topological superconductors. We use the symmetry-constrained scattering matrix approach to derive band dispersions of emergent sub-gap Andreev bound states in a multidimensional parameter space of superconducting phase differences. We find distinct topologically protected band crossings that serve as monopoles of finite Berry curvature. Particularly, in a four-terminal junction the admixture of $2pi$ and $4pi$ periodic levels leads to the appearance of finite energy Majorana-Weyl nodes. This topological regime in the junction can be characterized by a quantized nonlocal conductance that measures the Chern number of the corresponding bands. In addition, we calculate current-phase relations, variance, and cross-correlations of topological supercurrents in multiterminal contacts and discuss the universality of these transport characteristics. At the technical level these results are obtained by integrating over the group of a circular ensemble that describes the scattering matrix of the junction. We briefly discuss our results in the context of observed fluctuations of the gate dependence of the critical current in topological planar Josephson junctions and comment on the possibility of parity measurements from the switching current distributions in multiterminal Majorana junctions.
The discovery that a gate electrode suppresses the supercurrent in purely metallic systems is missing a complete physical understanding of the mechanisms at play. We here study the origin of this reduction in a Superconductor-Normal metal-Superconduc tor Josephson junction by performing, on the same device, a detailed investigation of the gate-dependent switching probability together with the local tunnelling spectroscopy of the normal metal. We demonstrate that high energy electrons leaking from the gate trigger the reduction of the critical current which is accompanied by an important broadening of the switching histograms. The switching rates are well described by an activation formula including an additional term accounting for the injection of rare high energy electrons from the gate. The rate of electrons obtained from the fit remarkably coincides with the independently measured leakage current. Concomitantly, a negligible elevation of the local temperature is found by tunnelling spectroscopy which excludes overheating scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا