ﻻ يوجد ملخص باللغة العربية
The X-ray variability in the soft X-ray spectral state of black hole binaries is primarily characterized by a power-law noise (PLN), which is thought to originate from the propagation of the modulation in the mass accretion rate of a standard accretion disk flow. Such a PLN has also been revealed in the disk spectral component in the hard and the intermediate states in several black hole binaries. Here we present an investigation of the {it Rossi} X-ray Timing Explorer (RXTE) observations of four black hole transients in which soft spectral states were observed twenty times or more. We show that in the soft spectral state, the PLN index varied in a large range between -1.64 and -0.62, and the fractional rms variability calculated in the 0.01 -- 20 Hz frequency range reached as large as 7.67% and as low as 0.83%. Remarkably, we have found the evidence of an inclination dependence of the maximal fractional rms variability, the averaged fractional rms variability and the fractional rms variability of the median in the sample based on current knowledge of inclination of black hole binaries. An inclination dependence has only been predicted in early magnetohydrodynamic simulations of isothermal disks limited to a high-frequency regime. In theory, the noise index is related to the physics of inward propagation of disk fluctuations, while the fractional rms amplitude reflects the intrinsic properties of the magnetohydrodynamic nature of the accretion flow. Our results therefore suggest that X-ray variability in the soft state can be used to put constraints on the properties of the accretion flow as well as the inclination of the accretion disk.
Sixteen years of observations of black hole transients with the Rossi X-ray Timing Explorer, complemented by other X-ray observatories and ground-based optical/infrared/radio telescopes have given us a clear view of the complex phenomenology associat
We present X-ray spectral analysis of Seyfert 1.5 Active Galactic Nuclei (AGN) NGC~4151 using textit{NuSTAR} observation during 2012. This is the first attempt to fit an AGN data using the physical Two Component Advective flow (TCAF) solution. We dis
During the June 2015 outburst of the black hole binary V404 Cyg, rapid changes in the X-ray brightness and spectra were common. The INTEGRAL monitoring campaign detected spectacular Eddington-limited X-ray flares, but also rapid variations at much lo
We report on the X-ray spectral analysis of the black hole candidate XTE J1752--223 in the 2009--2010 outburst, utilizing data obtained with the MAXI/Gas Slit Camera (GSC), the Swift/XRT, and Suzaku, which work complementarily. As already reported by
We present the X-ray broadband power spectral density function (PSD) of the X-ray-luminous Seyfert IC 4329a, constructed from light curves obtained via Rossi X-ray Timing Explorer monitoring and an XMM-Newton observation. Modeling the 3-10 keV PSD us