ترغب بنشر مسار تعليمي؟ اضغط هنا

Power spectral properties of the soft spectral states in four black hole transients

78   0   0.0 ( 0 )
 نشر من قبل Wenfei Yu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The X-ray variability in the soft X-ray spectral state of black hole binaries is primarily characterized by a power-law noise (PLN), which is thought to originate from the propagation of the modulation in the mass accretion rate of a standard accretion disk flow. Such a PLN has also been revealed in the disk spectral component in the hard and the intermediate states in several black hole binaries. Here we present an investigation of the {it Rossi} X-ray Timing Explorer (RXTE) observations of four black hole transients in which soft spectral states were observed twenty times or more. We show that in the soft spectral state, the PLN index varied in a large range between -1.64 and -0.62, and the fractional rms variability calculated in the 0.01 -- 20 Hz frequency range reached as large as 7.67% and as low as 0.83%. Remarkably, we have found the evidence of an inclination dependence of the maximal fractional rms variability, the averaged fractional rms variability and the fractional rms variability of the median in the sample based on current knowledge of inclination of black hole binaries. An inclination dependence has only been predicted in early magnetohydrodynamic simulations of isothermal disks limited to a high-frequency regime. In theory, the noise index is related to the physics of inward propagation of disk fluctuations, while the fractional rms amplitude reflects the intrinsic properties of the magnetohydrodynamic nature of the accretion flow. Our results therefore suggest that X-ray variability in the soft state can be used to put constraints on the properties of the accretion flow as well as the inclination of the accretion disk.

قيم البحث

اقرأ أيضاً

429 - Tomaso M. Belloni 2011
Sixteen years of observations of black hole transients with the Rossi X-ray Timing Explorer, complemented by other X-ray observatories and ground-based optical/infrared/radio telescopes have given us a clear view of the complex phenomenology associat ed with their bright outbursts. This has led to the definition of a small number of spectral/timing states which are separated by marked transitions in observables. The association of these states and their transitions to changes in the radio emission from relativistic radio jets completes the picture and have led to the study of the connection between accretion and ejection. A good number of fundamental questions are still unanswered, but the existing picture provides a good framework on which to base theoretical studies. We discuss the current observational standpoint, with emphasis onto the spectral and timing evolution during outbursts, as well as the prospects for future missions such as ASTROSAT (2012) and LOFT (>2020 if selected).
We present X-ray spectral analysis of Seyfert 1.5 Active Galactic Nuclei (AGN) NGC~4151 using textit{NuSTAR} observation during 2012. This is the first attempt to fit an AGN data using the physical Two Component Advective flow (TCAF) solution. We dis entangle the continuum emission properties of the source in the energy range $3.0$ to $70.0$~keV using the spectrum obtained from TCAF model. This model was used as an additive local model directly in {fontfamily{qcr}selectfont XSPEC}. Additionally, we used a power law (PL) component, to take care of possible X-ray contribution from the jet, which is not incorporated in the present version of TCAF. Our primary aim is to obtain the flow properties and the mass of the central supermassive black hole from the available archival data. Our best estimate of the average mass obtained from spectral fits of three observations, is $M_{BH}=3.03^{+0.26}_{-0.26}times 10^7 M_odot$. This is consistent with earlier estimations in the literature such as reverberation mapping, gas kinematics and stellar dynamics around black holes. We also discuss the accretion dynamics and the flow geometry on the basis of model fitted physical parameters. Model fitted disk accretion rate is found to be lower than the low angular momentum halo accretion rate, indicating that the source was in a hard state during the observation.
During the June 2015 outburst of the black hole binary V404 Cyg, rapid changes in the X-ray brightness and spectra were common. The INTEGRAL monitoring campaign detected spectacular Eddington-limited X-ray flares, but also rapid variations at much lo wer flux levels. On 2015 June 21 at 20 h 50 min, the 3-10 keV JEM-X data as well as simultaneous optical data started to display a gradual brightening from one of these low-flux states. This was followed 15 min later by an order-of-magnitude increase of flux in the 20-40 keV IBIS/ISGRI light curve in just 15 s. The best-fitting model for both the pre- and post-transition spectra required a Compton-thick partially covering absorber. The absorber parameters remained constant, but the spectral slope varied significantly during the event, with the photon index decreasing from $Gamma approx 3.7$ to $Gamma approx 2.3$. We propose that the rapid 20-40 keV flux increase was either caused by a spectral state transition that was hidden from our direct view, or that there was a sudden reduction in the amount of Compton down-scattering of the primary X-ray emission in the disk outflow.
We report on the X-ray spectral analysis of the black hole candidate XTE J1752--223 in the 2009--2010 outburst, utilizing data obtained with the MAXI/Gas Slit Camera (GSC), the Swift/XRT, and Suzaku, which work complementarily. As already reported by Nakahira et al. (2010) MAXI monitored the source continuously throughout the entire outburst for about eight months. All the MAXI/GSC energy spectra in the high/soft state lasting for 2 months are well represented by a multi-color disk plus power-law model. The innermost disk temperature changed from $sim$0.7 keV to $sim$0.4 keV and the disk flux decreased by an order of magnitude. Nevertheless, the innermost radius is constant at $sim$41 $D_{3.5}(cos{it i})^{-1/2}$ km, where $D_{3.5}$ is the source distance in units of 3.5 kpc and $i$ the inclination. The multi-color disk parameters obtained with the MAXI/GSC are consistent with those with the Swift/XRT and Suzaku. The Suzaku data also suggests a possibility that the disk emission is slightly Comptonized, which could account for broad iron-K features reported previously. Assuming that the obtained innermost radius represents the innermost stable circular orbit for a non-rotating black hole, we estimate the mass of the black hole to be 5.51$pm$0.28 $M_{odot}$ $D_{3.5}(cos{it i})^{-1/2}$, where the correction for the stress-free inner boundary condition and color hardening factor of 1.7 are taken into account. If the inclination is less than 49$^{circ}$ as suggested from the radio monitoring of transient jets and the soft-to-hard transition in 2010 April occurred at 1--4% of Eddignton luminosity, the fitting of the Suzaku spectra with a relativistic accretion-disk model derives constraints on the mass and the distance to be 3.1--55 $M_{odot}$ and 2.3--22 {rm kpc}, respectively. This confirms that the compact object in XTE J1752--223 is a black hole.
92 - A. Markowitz 2009
We present the X-ray broadband power spectral density function (PSD) of the X-ray-luminous Seyfert IC 4329a, constructed from light curves obtained via Rossi X-ray Timing Explorer monitoring and an XMM-Newton observation. Modeling the 3-10 keV PSD us ing a broken power-law PSD shape, a break in power-law slope is significantly detected at a temporal frequency of 2.5(+2.5,-1.7) * 10^-6 Hz, which corresponds to a PSD break time scale T_b of 4.6(+10.1,-2.3) days. Using the relation between T_b, black hole mass M_BH, and bolometric luminosity as quantified by McHardy and coworkers, we infer a black hole mass estimate of M_BH = 1.3(+1.0,-0.3) * 10^8 solar masses and an accretion rate relative to Eddington of 0.21(+0.06,-0.10) for this source. Our estimate of M_BH is consistent with other estimates, including that derived by the relation between M_BH and stellar velocity dispersion. We also present PSDs for the 10-20 and 20-40 keV bands; they lack sufficient temporal frequency coverage to reveal a significant break, but are consistent with the same PSD shape and break frequency as in the 3-10 keV band.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا