ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral properties of NGC 4151 and the Estimation of black hole mass using TCAF solution

347   0   0.0 ( 0 )
 نشر من قبل Prantik Nandi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present X-ray spectral analysis of Seyfert 1.5 Active Galactic Nuclei (AGN) NGC~4151 using textit{NuSTAR} observation during 2012. This is the first attempt to fit an AGN data using the physical Two Component Advective flow (TCAF) solution. We disentangle the continuum emission properties of the source in the energy range $3.0$ to $70.0$~keV using the spectrum obtained from TCAF model. This model was used as an additive local model directly in {fontfamily{qcr}selectfont XSPEC}. Additionally, we used a power law (PL) component, to take care of possible X-ray contribution from the jet, which is not incorporated in the present version of TCAF. Our primary aim is to obtain the flow properties and the mass of the central supermassive black hole from the available archival data. Our best estimate of the average mass obtained from spectral fits of three observations, is $M_{BH}=3.03^{+0.26}_{-0.26}times 10^7 M_odot$. This is consistent with earlier estimations in the literature such as reverberation mapping, gas kinematics and stellar dynamics around black holes. We also discuss the accretion dynamics and the flow geometry on the basis of model fitted physical parameters. Model fitted disk accretion rate is found to be lower than the low angular momentum halo accretion rate, indicating that the source was in a hard state during the observation.

قيم البحث

اقرأ أيضاً

NGC 4151 is the brightest Seyfert 1 nucleus in X-rays. It was the first object to show short time delays in the Fe K band, which were attributed to relativistic reverberation, providing a new tool for probing regions at the black hole scale. Here, we report the results of a large XMM-Newton campaign in 2015 to study these short delays further. Analyzing high quality data that span time scales between hours and decades, we find that neutral and ionized absorption contribute significantly to the spectral shape. Accounting for their effects, we find no evidence for a relativistic reflection component, contrary to early work. Energy-dependent lags are significantly measured in the new data, but with an energy profile that does not resemble a broad iron line, in contrast to the old data. The complex lag-energy spectra, along with the lack of strong evidence for a relativistic spectral component, suggest that the energy-dependent lags are produced by absorption effects. The long term spectral variations provide new details on the variability of the narrow Fe K$alpha$ line . We find that its variations are correlated with, and delayed with respect to, the primary X-ray continuum. We measure a delay of $tau= 3.3^{+1.8}_{-0.7}$ days, implying an origin in the inner broad line region (BLR). The delay is half the H$beta$ line delay, suggesting a geometry that differs slightly from the optical BLR.
The black hole transient H1743-322 exhibited several outbursts with temporal and spectral variability since its discovery in 1977. These outbursts occur at a quasi-regular recurrence period of around $0.5-2$ years, since its rediscovery in March 2003 . We investigate accretion flow dynamics around the Low Mass X-ray Binary H1743-322 during its 2004 outburst using the RXTE/PCA archival data. We use Two Component Advective Flow (TCAF) solution to analyse the spectral data. From the fits with TCAF solution, we obtain day to day variation of physical accretion rates of Keplerian and sub-Keplerian components, size of the Compton cloud and its other properties. Analysis of the spectral properties of the 2004 outburst by keeping fitted normalization to be in a narrow range and its timing properties in terms of the presence and absence of QPOs, enable us to constrain the mass of the black hole in a range of $10.31 M_{odot} - 14.07 M_{odot}$ which is consistent with other estimates reported in the literature.
The mass of a supermassive black hole ($M_mathrm{BH}$) is a fundamental property that can be obtained through observational methods. Constraining $M_mathrm{BH}$ through multiple methods for an individual galaxy is important for verifying the accuracy of different techniques, and for investigating the assumptions inherent in each method. NGC 4151 is one of those rare galaxies for which multiple methods can be used: stellar and gas dynamical modeling because of its proximity ($D=15.8pm0.4$ Mpc from Cepheids), and reverberation mapping because of its active accretion. In this work, we re-analyzed $H-$band integral field spectroscopy of the nucleus of NGC 4151 from Gemini NIFS, improving the analysis at several key steps. We then constructed a wide range of axisymmetric dynamical models with the new orbit-superposition code Forstand. One of our primary goals is to quantify the systematic uncertainties in $M_mathrm{BH}$ arising from different combinations of the deprojected density profile, inclination, intrinsic flattening, and mass-to-light ratio. As a consequence of uncertainties on the stellar luminosity profile arising from the presence of the AGN, our constraints on mbh are rather weak. Models with a steep central cusp are consistent with no black hole; however, in models with more moderate cusps, the black hole mass lies within the range of $0.25times10^7,M_odot lesssim M_mathrm{BH} lesssim 3times10^7,M_odot$. This measurement is somewhat smaller than the earlier analysis presented by Onken et al., but agrees with previous $M_mathrm{BH}$ values from gas dynamical modeling and reverberation mapping. Future dynamical modeling of reverberation data, as well as IFU observations with JWST, will aid in further constraining $M_mathrm{BH}$ in NGC 4151.
The galactic black hole candidate Cygnus X-1, one of the brightest sources in the sky, is the first ever black hole candidate to be discovered. Despite being a very well-studied object due to its persistent brightness in X-rays, there has been much d ifficulty in determining its mass since its discovery. In spite of continuous efforts since the early nineteen seventies, there is yet no concensus on its mass for nearly four decades. The uncertainties in the mass measurements are due to the high degree of error involved in the measurement of its distance. In 2011, Orosz et al. constrained the mass of this object to be M = 14.8 +/- 1.0 M_Sun using dynamical methods. In this paper, we obtained the mass of Cygnus X-1, using a completely independent method, namely, carrying out the spectral analysis using Two Component Advective Flow (TCAF) solution based fits file and the archival data of RXTE PCA instrument. Our result does not require the distance of the source or the information about the companion. Each spectral fit with the TCAF gives one best fitted mass. Averaging fitted masses of Cygnus X-1 over a span of five months of observation during its persistent hard phase, mass of the source comes out to be M_avg = 14.20 +/- 0.36 M_Sun, which is consistent with the dynamically estimated mass.
In order to improve the reverberation-mapping based estimate of the mass of the central supermassive black hole in the Seyfert 1 galaxy NGC 4151, we have reanalyzed archival ultraviolet monitoring spectra from two campaigns undertaken with the Intern ational Ultraviolet Explorer. We measure emission-line time delays for four lines, C IV 1549, He II 1640, C III] 1909, and Mg II 2798, from both campaigns. We combine these measurements with the dispersion of the variable part of each respective emission line to obtain the mass of the central object. Despite the problematic nature of some of the data, we are able to measure a mass of 41.1 (+/- 7.3) million solar masses, although this, like all reverberation-based masses, is probably systematically uncertain by a factor of 3-4.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا