ﻻ يوجد ملخص باللغة العربية
We prove that certain sequences of periodic orbits of the diagonal group in the space of lattices equidistribute. As an application we obtain new information regarding the sequence of best approximations to certain vectors with algebraic coordinates. In order to prove these results we generalize the seminal work of Eskin Mozes and Shah about the equidistribution of translates of periodic measures from the real case to the S-arithmetic case.
We define a natural topology on the collection of (equivalence classes up to scaling of) locally finite measures on a homogeneous space and prove that in this topology, pushforwards of certain infinite volume orbits equidistribute in the ambient spac
Arithmetic class are closed subsets of the euclidean space which generalise arithmetical conditions encoutered in dynamical systems, such as diophantine conditions or Bruno type conditions. I prove density estimates for such sets using Dani-Kleinbock-Margulis techniques.
We prove decidability results on the existence of constant subsequences of uniformly recurrent morphic sequences along arithmetic progressions. We use spectral properties of the subshifts they generate to give a first algorithm deciding whether, give
We study one-dimensional algebraic families of pairs given by a polynomial with a marked point. We prove an unlikely intersection statement for such pairs thereby exhibiting strong rigidity features for these pairs. We infer from this result the dyna
Let $pi: (X,T)rightarrow (Y,T)$ be a factor map of topological dynamics and $din {mathbb {N}}$. $(Y,T)$ is said to be a $d$-step topological characteristic factor if there exists a dense $G_delta$ set $X_0$ of $X$ such that for each $xin X_0$ the orb