ترغب بنشر مسار تعليمي؟ اضغط هنا

Crown formation from a cavitating bubble close to a free surface

286   0   0.0 ( 0 )
 نشر من قبل Youssef Saade
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A rapidly growing bubble close to a free surface induces jetting: a central jet protruding outwards and a crown surrounding it at later stages. While the formation mechanism of the central jet is known and documented, that of the crown remains unsettled. We perform axisymmetric simulations of the problem using the free software program basilisk, where a finite-volume compressible solver has been implemented, that uses a geometric Volume-of-Fluid method (VoF) for the tracking of the interface. We show that the mechanism of crown formation is a combination of a pressure distortion over the curved interface, inducing flow focusing, and of a flow reversal, caused by the second expansion of the toroidal bubble that drives the crown. The work culminates in a parametric study with the Weber number, the Reynolds number, the pressure ratio and the dimensionless bubble distance to the free surface as control parameters. Their effects on both the central jet and the crown are explored. For high Weber numbers, we observe the formation of weaker secondary crowns, highly correlated with the third oscillation cycle of the bubble.

قيم البحث

اقرأ أيضاً

The formation of a single bubble from an orifice in a solid surface, submerged in an in- compressible, viscous Newtonian liquid, is simulated. The finite element method is used to capture the multiscale physics associated with the problem and to trac k the evolution of the free surface explicitly. The results are compared to a recent experimental analysis and then used to obtain the global characteristics of the process, the formation time and volume of the bubble, for a range of orifice radii; Ohnesorge numbers, which combine the material parameters of the liquid; and volumetric gas flow rates. These benchmark calculations, for the parameter space of interest, are then utilised to validate a selection of scaling laws found in the literature for two regimes of bubble formation, the regimes of low and high gas flow rates.
The classic evolution equations for potential flow on the free surface of a fluid flow are not closed because the pressure and the vertical velocity dynamics are not specified on the free surface. Moreover, their wave dynamics does not cause circulat ion of the fluid velocity on the free surface. The equations for free-surface motion we derive here are closed and they are not restricted to potential flow. Hence, true wave-current interaction dynamics can occur. In particular, the Kelvin-Noether theorem demonstrates that wave activity can induce fluid circulation and vorticity dynamics on the free surface. The wave-current interaction equations introduced here open new vistas for both the deterministic and stochastic analysis of nonlinear waves on free surfaces.
In the present study, simulations are directed to capture the dynamics of evacuating inner gas of a bubble bursting at the free surface, using Eulerian based volume of fluid (VOF) method. The rate by which surrounding air rushing inside the bubble ca vity through the inner gas evacuation is estimated and compared by the collapsing bubble cavity during the sequential stages of the bubble bursting at the free surface. Further, the reachability of inner gas over the free surface is evaluated by establishing the comparison of the same through various horizontal planes, lying at different altitudes above the unperturbed surface. The evacuating inner gas accompanies vortex rings, which entrains the surrounding gas-phase. During the successive stages of air entrainment, spatiotemporal characteristics of the vortex ring are obtained. At low Bond numbers (< 1), after comparing the phase contours of evacuating inner gas from the bubble cavity, the consequences at the axial growth of gas jet and the radial expansion of the jet tip is discussed separately. Furthermore, under the respiration process, the axial growth of rising inner gas over the free surface and the radial expansion of vortex rings of a bubble bursting at the free surface is compared with the quiescent surrounding air. At last, the effects of various possible asymmetric perforation of the bubble cap keeping the same Bo are studied. The cause of bent gas jet, as a consequence of perforation of the bubble cap, asymmetrically, is explained by plotting the velocity vectors.
The impact of a collapsing gas bubble above rigid, notched walls is considered. Such surface crevices and imperfections often function as bubble nucleation sites, and thus have a direct relation to cavitation-induced erosion and damage structures. A generic configuration is investigated numerically using a second-order-accurate compressible multi-component flow solver in a two-dimensional axisymmetric coordinate system. Results show that the crevice geometry has a significant effect on the collapse dynamics, jet formation, subsequent wave dynamics, and interactions. The wall-pressure distribution associated with erosion potential is a direct consequence of development and intensity of these flow phenomena.
The cavitation behaviour of a four-blade rocket engine turbopump inducer is simulated. A 2D numerical model of unsteady cavitation was applied to a blade cascade drawn fromthe inducer geometry. The physical model is based on a homogeneous approach of cavitation, coupled with a barotropic state law for the liquid/vapour mixture. The numericalresolution uses a pressure-correction method derived from the SIMPLE algorithm and a finite volume discretization. Unsteadybehaviour of sheet cavities attached to the blade suction side depends on the flow rate and cavitation number. Two differentunstable configurations of rotating cavitation, respectively sub-synchronous and super-synchronous, are identified. The mechanisms that are responsible for these unstable behaviours are discussed, and the stress fluctuations induced on the blade by the rotating cavitation are estimated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا