ﻻ يوجد ملخص باللغة العربية
Spin-orbit coupling (SOC) often gives rise to interesting electronic and magnetic phases in an otherwise ordinary pool of paramagnetic heavy metal oxides. In presence of strong SOC, assumed to be working in $j$-$j$ coupling regime, 5$d^4$ iridates are generally speculated to possess a nonmagnetic $J_{eff}$~=~0 singlet ground state, which invariably gets masked due to different solid-state effects (e.g. hopping). Here, we try to probe the trueness of the atomic SOC-based proposal in an apparently 1-dimensional system, Sr$_3$NaIrO$_6$, possessing a 2$H$ hexagonal structure with well separated Ir$^{5+}$ (5$d^4$) ions. But all the detailed experimental as well as theoretical characterizations reveal that the ground state of Sr$_3$NaIrO$_6$ is not nonmagnetic, rather accommodating a significantly high effective magnetic moment on Ir$^{5+}$ ion. However our combined dc susceptibility ($chi$), ${}^{23}$Na nuclear magnetic resonance (NMR), muon-spin-relaxation/rotation ($mu$SR) and heat capacity ($C_p$) measurements clearly refute any sign of spin-freezing or ordered magnetism among the Ir$^{5+}$ moments due to geometrical exchange frustration, while in-depth zero-field (ZF) and longitudinal field (LF) $mu$SR investigations strongly point towards inhomogeneous quantum spin-orbital liquid (QSOL)-like ground state. In addition, the linear temperature dependence of both the NMR spin-lattice relaxation rate and the magnetic heat capacity at low temperatures suggest low-lying gapless spin excitations in the QSOL phase of this material. Finally, we conclude that the effective SOC realised in $d^4$ iridates are unlikely to offer a ground state which will be consistent with a purely atomic $j$-$j$ coupling description.
We report a combined experimental and theoretical x-ray magnetic circular dichroism (XMCD) spectroscopy study at the Ir-$L_{2,3}$ edges on the Ir$^{5+}$ ions of the layered hybrid solid state oxide Sr$_2$Co$_{0.5}$Ir$_{0.5}$O$_4$ with the K$_2$NiF$_4
Oxides containing iridium ions display a range of magnetic and conducting properties that depend on the delicate balance between interactions and are controlled, at least in part, by the details of the crystal architecture. We have used muon-spin rot
Novel ground states might be realized in honeycomb lattices with strong spin-orbit coupling. Here we study the electronic structure of ${alpha}$-RuCl$_3$, in which the Ru ions are in a d5 configuration and form a honeycomb lattice, by angle-resolved
Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Discovering new spin-orbit entangled ground states and emergent phases of matter requires both experimentally probing the relev
Sr$_{3}$ZnIrO$_{6}$ is an effective spin one-half Mott insulating iridate belonging to a family of magnets which includes a number of quasi-one dimensional systems as well as materials exhibiting three dimensional order. Here we present the results o