ترغب بنشر مسار تعليمي؟ اضغط هنا

Complete crystallographic, spin-electronic and magnetic structure of (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4: Unraveling the suppression of entropy in high entropy oxides

65   0   0.0 ( 0 )
 نشر من قبل Abhishek Sarkar
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High entropy oxides (HEOs) are a rapidly emerging class of chemically complex functional materials. The original paradigm of HEOs assumes cationic occupations with the highest possible configurational entropy allowed by the composition and crystallographic structure. However, the fundamental question remains on the actual degree of configurational disorder and its subsequent stabilizing role in HEOs. Considering the experimental limitations due to the inherent chemical complexity of HEOs, here we utilize a robust and cross-referenced characterization approach using soft X-ray magnetic circular dichroism, hard X-ray absorption spectroscopy, Mossbauer spectroscopy, neutron powder diffraction and SQUID magnetometry to study the competition between enthalpy and configurational entropy on a lattice level in a model spinel HEO (S-HEO), (Co$_{0.2}$Cr$_{0.2}$Fe$_{0.2}$Mn$_{0.2}$Ni$_{0.2}$)$_3$O$_4$. In contrast to the previous studies, the derived complete structural and spin-electronic model, (Co$_{0.6}$Fe$_{0.4}$)(Cr$_{0.3}$Fe$_{0.1}$Mn$_{0.3}$Ni$_{0.3}$)$_2$O$_4$, highlights a significant deviation from the hitherto assumed paradigm of entropy-driven non-preferential distribution of cations in HEOs. An immediate correlation of this result can be drawn with bulk as well as the local element specific magnetic properties, which are intrinsically dictated by cationic occupations in spinels. The real local lattice picture presented here provides an alternate viewpoint on ionic arrangement in HEOs, which is of fundamental interest for predicting and designing their structure-dependent functionalities.

قيم البحث

اقرأ أيضاً

High entropy oxides (HEOs) are single phase solid solutions consisting of 5 or more cations in approximately equiatomic proportions. In this study, we show reversible control of optical properties in a rare-earth (RE) based HEO-(Ce$_{0.2}$La$_{0.2}$P r$_{0.2}$Sm$_{0.2}$Y$_{0.2}$)O$_{2-delta}$ and subsequently utilize a combination of spectroscopic techniques to derive the features of the electronic band structure underpinning the observed optical phenomena. Heat treatment of the HEO under vacuum atmosphere followed by reheat-treatment in air results in a reversible change of the band gap energy, from 1.9 eV to 2.5 eV. The finding is consistent with the reversible changes in the oxidation state and related $f$-orbital occupancy of Pr. However, no pertinent changes in the phase composition or crystal structure is observed upon the vacuum heat treatment. Further annealing of this HEO under H$_2$ atmosphere, followed by reheat-treatment in air, results in even larger but still reversible change of the band gap energy from 1.9 eV to 3.2 eV. This is accompanied by a disorder-order type crystal structure transition and changes in the O 2$p$-RE 5$d$ hybridization evidenced from X-ray absorption near edge spectra (XANES). The O $K$ and RE ${M_{4,5}}$/$L_{3}$ XANES indicate that the presence of Ce and Pr (in 3+/4+) state leads to the formation of intermediate 4$f$ energy levels between the O 2$p$ and RE 5$d$ gap in HEO. It is concluded that heat treatment under reducing/oxidizing atmospheres affects these intermediate levels, thus, offering the possibility to tune the band gap energy in HEO.
Disorder can have a dominating influence on correlated and quantum materials leading to novel behaviors which have no clean limit counterparts. In magnetic systems, spin and exchange disorder can provide access to quantum criticality, frustration, an d spin dynamics, but broad tunability of these responses and a deeper understanding of strong limit disorder is lacking. In this work, we demonstrate that high entropy oxides present an unexplored route to designing quantum materials in which the presence of strong local compositional disorder hosted on a positionally ordered lattice can be used to generate highly tunable emergent magnetic behavior--from macroscopically ordered states to frustration-driven dynamic spin interactions. Single crystal La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 films are used as a structurally uniform model system hosting a magnetic sublattice with massive microstate disorder in the form of site-to-site spin and exchange type inhomogeneity. A classical Heisenberg model is found to be sufficient to describe how compositionally disordered systems can paradoxically host long-range magnetic uniformity and demonstrates that balancing the populating elements based on their discrete quantum parameters can be used to give continuous control over ordering types and critical temperatures. Theory-guided experiments show that composite exchange values derived from the complex mix of microstate interactions can be used to design the required compositional parameters for a desired response. These predicted materials are synthesized and found to possess an incipient quantum critical point when magnetic ordering types are designed to be in direct competition; this leads to highly controllable exchange bias sensitivity in the monolithic single crystal films previously accessible only in intentionally designed bilayer heterojunctions.
We discuss the application of the Agapito Curtarolo and Buongiorno Nardelli (ACBN0) pseudo-hybrid Hubbard density functional to several transition metal oxides. ACBN0 is a fast, accurate and parameter-free alternative to traditional DFT+$U$ and hybri d exact exchange methods. In ACBN0, the Hubbard energy of DFT+$U$ is calculated via the direct evaluation of the local Coulomb and exchange integrals in which the screening of the bare Coulomb potential is accounted for by a renormalization of the density matrix. We demonstrate the success of the ACBN0 approach for the electronic properties of a series technologically relevant mono-oxides (MnO, CoO, NiO, FeO, both at equilibrium and under pressure). We also present results on two mixed valence compounds, Co$_3$O$_4$ and Mn$_3$O$_4$. Our results, obtained at the computational cost of a standard LDA/PBE calculation, are in excellent agreement with hybrid functionals, the GW approximation and experimental measurements.
The lattice dynamics for NiCo, NiFe, NiFeCo, NiFeCoCr, and NiFeCoCrMn medium to high entropy alloy have been investigated using the DFT calculation. The phonon dispersions along three different symmetry directions are calculated by the weighted dynam ical matrix (WDM) approach and compared with the supercell approach and inelastic neutron scattering. We could correctly predict the trend of increasing of the vibrational entropy by adding the alloys and the highest vibrational entropy in NiFeCoCrMn high entropy alloy by WDM approach. The averaged first nearest neighbor (1NN) force constants between various pairs of atoms in these intermetallic are obtained from the WDM approach. The results are discussed based on the analysis of these data.
High-entropy perovskite thin films, as the prototypical representative of the high-entropy oxides with novel electrical and magnetic features, have recently attracted great attention. Here, we reported the electronic structure and charge transport pr operties of sol-gel-derived high-entropy Ba(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3 thin films annealed at various temperatures. By means of X-ray photoelectron spectroscopy and absorption spectrum, it is found that the conduction-band-minimum shifts downward and the valence-band-maximum shifts upward with the increase of annealing temperature, leading to the narrowed band gap. Electrical resistance measurements confirmed a semiconductor-like behavior for all the thin films. Two charge transport mechanisms, i.e., the thermally-activated transport mechanism at high temperatures and the activation-less transport mechanism at low temperatures, are identified by a self-consistent analysis method. These findings provide a critical insight into the electronic band structure and charge transport behavior of Ba(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3, validating it as a compelling high-entropy oxide material for future electronic/energy-related technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا