ترغب بنشر مسار تعليمي؟ اضغط هنا

Vibrational Entropy Investigation in High Entropy Alloys

89   0   0.0 ( 0 )
 نشر من قبل Mina Aziziha
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The lattice dynamics for NiCo, NiFe, NiFeCo, NiFeCoCr, and NiFeCoCrMn medium to high entropy alloy have been investigated using the DFT calculation. The phonon dispersions along three different symmetry directions are calculated by the weighted dynamical matrix (WDM) approach and compared with the supercell approach and inelastic neutron scattering. We could correctly predict the trend of increasing of the vibrational entropy by adding the alloys and the highest vibrational entropy in NiFeCoCrMn high entropy alloy by WDM approach. The averaged first nearest neighbor (1NN) force constants between various pairs of atoms in these intermetallic are obtained from the WDM approach. The results are discussed based on the analysis of these data.



قيم البحث

اقرأ أيضاً

Whereas exceptional mechanical and radiation performances have been found in the emergent medium- and high-entropy alloys (MEAs and HEAs), the importance of their complex atomic environment, reflecting diversity in atomic size and chemistry, to defec t transport has been largely unexplored at the atomic level. Here we adopt a local structure approach based on the atomic pair distribution function measurements in combination with density functional theory calculations to investigate a series of body-centered cubic (BCC) MEAs and HEAs. Our results demonstrate that all alloys exhibit local lattice distortions (LLD) to some extent, but an anomalous LLD, merging of the first and second atomic shells, occurs only in the Zr- and/or Hf-containing MEAs and HEAs. In addition, through the ab-initio simulations we show that charge transfer among the elements profoundly reduce the size mismatch effect. The observed competitive coexistence between LLD and charge transfer not only demonstrates the importance of the electronic effects on the local environments in MEAs and HEAs, but also provides new perspectives to in-depth understanding of the complicated defect transport in these alloys.
106 - Y. Tong , G. Velisa , T. Yang 2017
The atomic-level tunability that results from alloying multiple transition metals with d electrons in concentrated solid solution alloys (CSAs), including high-entropy alloys (HEAs), has produced remarkable properties for advanced energy applications , in particular, damage resistance in high-radiation environments. The key to understanding CSAs radiation performance is quantitatively characterizing their complex local physical and chemical environments. In this study, the local structure of a FeCoNiCrPd HEA is quantitatively analyzed with X-ray total scattering and extended X-ray absorption fine structure methods. Compared to FeCoNiCr and FeCoNiCrMn, FeCoNiCrPd with a quasi-random alloy structure has a strong local lattice distortion, which effectively pins radiation-induced defects. Distinct from a relaxation behavior in FeCoNiCr and FeCoNiCrMn, ion irradiation further enhanced the local lattice distortion in FeCoNiCrPd due to a preference for forming Pd-Pd atomic pairs.
141 - A Kareer , JC Waite , B Li 2019
Two new, low activation high entropy alloys (HEAs) TiVZrTa and TiVCrTa are studied for use as in-core, structural nuclear materials for in-core nuclear applications. Low-activation is a desirable property for nuclear reactors, in an attempt to reduce the amount of high level radioactive waste upon decommissioning, and for consideration in fusion applications.The alloy TiVNbTa is used as a starting composition to develop two new HEAs; TiVZrTa and TiVCrTa. The new alloys exhibit comparable indentation hardness and modulus, to the TiVNbTa alloy in the as-cast state. After heavy ion implantation the new alloys show an increased irradiation resistance.
Fe2Al5 contains a Fe-Al matrix through which are threaded disordered one-dimensional chains of overlapping Al sites. We report magnetic, nuclear-magnetic-resonance (NMR), and specific-heat measurements addressing its magnetic and vibrational properti es. The Curie-type susceptibility is found to be due to dilute moments, likely due to wrong-site Fe atoms. 27Al NMR shift and spin-lattice relaxation measurements confirm these to be indirectly coupled through a Ruderman-Kittel-Kasuya-Yoshida-type interaction. Specific-heat results indicate a large density of low-energy vibrational modes. These excitations generate a linear-T contribution to the specific heat, which however freezes out below about 10 K. These results are attributed to the presence of anharmonic vibrational modes associated with the disordered structural chains.
We have investigated the plastic deformation properties of non-equiatomic single phase Zr-Nb-Ti-Ta-Hf high-entropy alloys from room temperature up to 300 {deg}C. Uniaxial deformation tests at a constant strain rate of 10$^{-4}$ s$^{-1}$ were performe d including incremental tests such as stress-relaxations, strain-rate- and temperature changes in order to determine the thermodynamic activation parameters of the deformation process. The microstructure of deformed samples was characterized by transmission electron microscopy. The strength of the investigated Zr-Nb-Ti-Ta-Hf phase is not as high as the values frequently reported for high-entropy alloys in other systems. We find an activation enthalpy of about 1 eV and a stress dependent activation volume between 0.5 and 2 nm$^3$. The measurement of the activation parameters at higher temperatures is affected by structural changes evolving in the material during plastic deformation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا