ﻻ يوجد ملخص باللغة العربية
Analyzing human affect is vital for human-computer interaction systems. Most methods are developed in restricted scenarios which are not practical for in-the-wild settings. The Affective Behavior Analysis in-the-wild (ABAW) 2021 Contest provides a benchmark for this in-the-wild problem. In this paper, we introduce a multi-modal and multi-task learning method by using both visual and audio information. We use both AU and expression annotations to train the model and apply a sequence model to further extract associations between video frames. We achieve an AU score of 0.712 and an expression score of 0.477 on the validation set. These results demonstrate the effectiveness of our approach in improving model performance.
General embeddings like word2vec, GloVe and ELMo have shown a lot of success in natural language tasks. The embeddings are typically extracted from models that are built on general tasks such as skip-gram models and natural language generation. In th
In facial action unit (AU) recognition tasks, regional feature learning and AU relation modeling are two effective aspects which are worth exploring. However, the limited representation capacity of regional features makes it difficult for relation mo
Multi-task learning is an effective learning strategy for deep-learning-based facial expression recognition tasks. However, most existing methods take into limited consideration the feature selection, when transferring information between different t
In this paper, the multi-task learning of lightweight convolutional neural networks is studied for face identification and classification of facial attributes (age, gender, ethnicity) trained on cropped faces without margins. The necessity to fine-tu
In this report, our approach to tackling the task of ActivityNet 2018 Kinetics-600 challenge is described in detail. Though spatial-temporal modelling methods, which adopt either such end-to-end framework as I3D cite{i3d} or two-stage frameworks (i.e