ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Multi-task Learning for Facial Expression Recognition and Synthesis Based on Selective Feature Sharing

76   0   0.0 ( 0 )
 نشر من قبل Rui Zhao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-task learning is an effective learning strategy for deep-learning-based facial expression recognition tasks. However, most existing methods take into limited consideration the feature selection, when transferring information between different tasks, which may lead to task interference when training the multi-task networks. To address this problem, we propose a novel selective feature-sharing method, and establish a multi-task network for facial expression recognition and facial expression synthesis. The proposed method can effectively transfer beneficial features between different tasks, while filtering out useless and harmful information. Moreover, we employ the facial expression synthesis task to enlarge and balance the training dataset to further enhance the generalization ability of the proposed method. Experimental results show that the proposed method achieves state-of-the-art performance on those commonly used facial expression recognition benchmarks, which makes it a potential solution to real-world facial expression recognition problems.



قيم البحث

اقرأ أيضاً

109 - Andrey V. Savchenko 2021
In this paper, the multi-task learning of lightweight convolutional neural networks is studied for face identification and classification of facial attributes (age, gender, ethnicity) trained on cropped faces without margins. The necessity to fine-tu ne these networks to predict facial expressions is highlighted. Several models are presented based on MobileNet, EfficientNet and RexNet architectures. It was experimentally demonstrated that they lead to near state-of-the-art results in age, gender and race recognition on the UTKFace dataset and emotion classification on the AffectNet dataset. Moreover, it is shown that the usage of the trained models as feature extractors of facial regions in video frames leads to 4.5% higher accuracy than the previously known state-of-the-art single models for the AFEW and the VGAF datasets from the EmotiW challenges. The models and source code are publicly available at https://github.com/HSE-asavchenko/face-emotion-recognition.
114 - Delian Ruan , Yan Yan , Shenqi Lai 2021
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) a cross different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
Facial expressions recognition (FER) of 3D face scans has received a significant amount of attention in recent years. Most of the facial expression recognition methods have been proposed using mainly 2D images. These methods suffer from several issue s like illumination changes and pose variations. Moreover, 2D mapping from 3D images may lack some geometric and topological characteristics of the face. Hence, to overcome this problem, a multi-modal 2D + 3D feature-based method is proposed. We extract shallow features from the 3D images, and deep features using Convolutional Neural Networks (CNN) from the transformed 2D images. Combining these features into a compact representation uses covariance matrices as descriptors for both features instead of single-handedly descriptors. A covariance matrix learning is used as a manifold layer to reduce the deep covariance matrices size and enhance their discrimination power while preserving their manifold structure. We then use the Bag-of-Features (BoF) paradigm to quantize the covariance matrices after flattening. Accordingly, we obtained two codebooks using shallow and deep features. The global codebook is then used to feed an SVM classifier. High classification performances have been achieved on the BU-3DFE and Bosphorus datasets compared to the state-of-the-art methods.
68 - Keyu Yan 2018
Cross-database non-frontal expression recognition is a very meaningful but rather difficult subject in the fields of computer vision and affect computing. In this paper, we proposed a novel transductive deep transfer learning architecture based on wi dely used VGGface16-Net for this problem. In this framework, the VGGface16-Net is used to jointly learn an common optimal nonlinear discriminative features from the non-frontal facial expression samples between the source and target databases and then we design a novel transductive transfer layer to deal with the cross-database non-frontal facial expression classification task. In order to validate the performance of the proposed transductive deep transfer learning networks, we present extensive crossdatabase experiments on two famous available facial expression databases, namely the BU-3DEF and the Multi-PIE database. The final experimental results show that our transductive deep transfer network outperforms the state-of-the-art cross-database facial expression recognition methods.
We present an approach that combines automatic features learned by convolutional neural networks (CNN) and handcrafted features computed by the bag-of-visual-words (BOVW) model in order to achieve state-of-the-art results in facial expression recogni tion. To obtain automatic features, we experiment with multiple CNN architectures, pre-trained models and training procedures, e.g. Dense-Sparse-Dense. After fusing the two types of features, we employ a local learning framework to predict the class label for each test image. The local learning framework is based on three steps. First, a k-nearest neighbors model is applied in order to select the nearest training samples for an input test image. Second, a one-versus-all Support Vector Machines (SVM) classifier is trained on the selected training samples. Finally, the SVM classifier is used to predict the class label only for the test image it was trained for. Although we have used local learning in combination with handcrafted features in our previous work, to the best of our knowledge, local learning has never been employed in combination with deep features. The experiments on the 2013 Facial Expression Recognition (FER) Challenge data set, the FER+ data set and the AffectNet data set demonstrate that our approach achieves state-of-the-art results. With a top accuracy of 75.42% on FER 2013, 87.76% on the FER+, 59.58% on AffectNet 8-way classification and 63.31% on AffectNet 7-way classification, we surpass the state-of-the-art methods by more than 1% on all data sets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا