ترغب بنشر مسار تعليمي؟ اضغط هنا

Crystallographic groups and flat manifolds from surface braid groups

123   0   0.0 ( 0 )
 نشر من قبل John Guaschi
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $M$ be a compact surface without boundary, and $ngeq 2$. We analyse the quotient group $B_n(M)/Gamma_2(P_n(M))$ of the surface braid group $B_{n}(M)$ by the commutator subgroup $Gamma_2(P_n(M))$ of the pure braid group $P_{n}(M)$. If $M$ is different from the $2$-sphere $mathbb{S}^2$, we prove that $B_n(M)/Gamma_2(P_n(M))$ is isomorphic rho $P_n(M)/Gamma_2(P_n(M)) rtimes_{varphi} S_n$, and that $B_n(M)/Gamma_2(P_n(M))$ is a crystallographic group if and only if $M$ is orientable. If $M$ is orientable, we prove a number of results regarding the structure of $B_n(M)/Gamma_2(P_n(M))$. We characterise the finite-order elements of this group, and we determine the conjugacy classes of these elements. We also show that there is a single conjugacy class of finite subgroups of $B_n(M)/Gamma_2(P_n(M))$ isomorphic either to $S_n$ or to certain Frobenius groups. We prove that crystallographic groups whose image by the projection $B_n(M)/Gamma_2(P_n(M))to S_n$ is a Frobenius group are not Bieberbach groups. Finally, we construct a family of Bieberbach subgroups $tilde{G}_{n,g}$ of $B_n(M)/Gamma_2(P_n(M))$ of dimension $2ng$ and whose holonomy group is the finite cyclic group of order $n$, and if $mathcal{X}_{n,g}$ is a flat manifold whose fundamental group is $tilde{G}_{n,g}$, we prove that it is an orientable Kahler manifold that admits Anosov diffeomorphisms.

قيم البحث

اقرأ أيضاً

Let $n, k geq 3$. In this paper, we analyse the quotient group $B_n/Gamma_k(P_n)$ of the Artin braid group $B_n$ by the subgroup $Gamma_k(P_n)$ belonging to the lower central series of the Artin pure braid group $P_n$. We prove that it is an almost-c rystallographic group. We then focus more specifically on the case $k=3$. If $n geq 5$, and if $tau in N$ is such that $gcd(tau, 6) = 1$, we show that $B_n/Gamma_3 (P_n)$ possesses torsion $tau$ if and only if $S_n$ does, and we prove that there is a one-to-one correspondence between the conjugacy classes of elements of order $tau$ in $B_n/Gamma_3 (P_n)$ with those of elements of order $tau$ in the symmetric group $S_n$. We also exhibit a presentation for the almost-crystallographic group $B_n/Gamma_3 (P_n)$. Finally, we obtain some $4$-dimensional almost-Bieberbach subgroups of $B_3/Gamma_3 (P_3)$, we explain how to obtain almost-Bieberbach subgroups of $B_4/Gamma_3(P_4)$ and $B_3/Gamma_4(P_3)$, and we exhibit explicit elements of order $5$ in $B_5/Gamma_3 (P_5)$.
We show that surface groups are flexibly stable in permutations. Our method is purely geometric and relies on an analysis of branched covers of hyperbolic surfaces. Along the way we establish a quantitative variant of the LERF property for surface groups which may be of independent interest.
258 - Henry Wilton 2020
Surface groups are determined among limit groups by their profinite completions. As a corollary, the set of surface words in a free group is closed in the profinite topology.
Let $Gamma$ be the fundamental group of a surface of finite type and Comm$(Gamma)$ be its abstract commensurator. Then Comm$(Gamma)$ contains the solvable Baumslag--Solitar groups $langle a ,b : a b a^{-1} = b^n rangle$ for any $n > 1$. Moreover, the Baumslag--Solitar group $langle a ,b : a b^2 a^{-1} = b^3 rangle$ has an image in Comm$(Gamma)$ that is not residually finite. Our proofs are computer-assisted. Our results also illustrate that finitely-generated subgroups of Comm$(Gamma)$ are concrete objects amenable to computational methods. For example, we give a proof that $langle a ,b : a b^2 a^{-1} = b^3 rangle$ is not residually finite without the use of normal forms of HNN extensions.
We establish lower bounds on the dimensions in which arithmetic groups with torsion can act on acyclic manifolds and homology spheres. The bounds rely on the existence of elementary p-groups in the groups concerned. In some cases, including Sp(2n,Z), the bounds we obtain are sharp: if X is a generalized Z/3-homology sphere of dimension less than 2n-1 or a Z/3-acyclic Z/3-homology manifold of dimension less than 2n, and if n geq 3, then any action of Sp(2n,Z) by homeomorphisms on X is trivial; if n = 2, then every action of Sp(2n,Z) on X factors through the abelianization of Sp(4,Z), which is Z/2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا