ترغب بنشر مسار تعليمي؟ اضغط هنا

On abstract commensurators of surface groups

100   0   0.0 ( 0 )
 نشر من قبل Daniel Studenmund
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $Gamma$ be the fundamental group of a surface of finite type and Comm$(Gamma)$ be its abstract commensurator. Then Comm$(Gamma)$ contains the solvable Baumslag--Solitar groups $langle a ,b : a b a^{-1} = b^n rangle$ for any $n > 1$. Moreover, the Baumslag--Solitar group $langle a ,b : a b^2 a^{-1} = b^3 rangle$ has an image in Comm$(Gamma)$ that is not residually finite. Our proofs are computer-assisted. Our results also illustrate that finitely-generated subgroups of Comm$(Gamma)$ are concrete objects amenable to computational methods. For example, we give a proof that $langle a ,b : a b^2 a^{-1} = b^3 rangle$ is not residually finite without the use of normal forms of HNN extensions.



قيم البحث

اقرأ أيضاً

In this paper we initiate a systematic study of the abstract commensurators of profinite groups. The abstract commensurator of a profinite group $G$ is a group $Comm(G)$ which depends only on the commensurability class of $G$. We study various proper ties of $Comm(G)$; in particular, we find two natural ways to turn it into a topological group. We also use $Comm(G)$ to study topological groups which contain $G$ as an open subgroup (all such groups are totally disconnected and locally compact). For instance, we construct a topologically simple group which contains the pro-2 completion of the Grigorchuk group as an open subgroup. On the other hand, we show that some profinite groups cannot be embedded as open subgroups of compactly generated topologically simple groups. Several celebrated rigidity theorems, like Pinks analogue of Mostows strong rigidity theorem for simple algebraic groups defined over local fields and the Neukirch-Uchida theorem, can be reformulated as structure theorems for the commensurators of certain profinite groups.
258 - Henry Wilton 2020
Surface groups are determined among limit groups by their profinite completions. As a corollary, the set of surface words in a free group is closed in the profinite topology.
We show that surface groups are flexibly stable in permutations. Our method is purely geometric and relies on an analysis of branched covers of hyperbolic surfaces. Along the way we establish a quantitative variant of the LERF property for surface groups which may be of independent interest.
Let $M$ be a compact surface without boundary, and $ngeq 2$. We analyse the quotient group $B_n(M)/Gamma_2(P_n(M))$ of the surface braid group $B_{n}(M)$ by the commutator subgroup $Gamma_2(P_n(M))$ of the pure braid group $P_{n}(M)$. If $M$ is diffe rent from the $2$-sphere $mathbb{S}^2$, we prove that $B_n(M)/Gamma_2(P_n(M))$ is isomorphic rho $P_n(M)/Gamma_2(P_n(M)) rtimes_{varphi} S_n$, and that $B_n(M)/Gamma_2(P_n(M))$ is a crystallographic group if and only if $M$ is orientable. If $M$ is orientable, we prove a number of results regarding the structure of $B_n(M)/Gamma_2(P_n(M))$. We characterise the finite-order elements of this group, and we determine the conjugacy classes of these elements. We also show that there is a single conjugacy class of finite subgroups of $B_n(M)/Gamma_2(P_n(M))$ isomorphic either to $S_n$ or to certain Frobenius groups. We prove that crystallographic groups whose image by the projection $B_n(M)/Gamma_2(P_n(M))to S_n$ is a Frobenius group are not Bieberbach groups. Finally, we construct a family of Bieberbach subgroups $tilde{G}_{n,g}$ of $B_n(M)/Gamma_2(P_n(M))$ of dimension $2ng$ and whose holonomy group is the finite cyclic group of order $n$, and if $mathcal{X}_{n,g}$ is a flat manifold whose fundamental group is $tilde{G}_{n,g}$, we prove that it is an orientable Kahler manifold that admits Anosov diffeomorphisms.
We consider the question of which right-angled Artin groups contain closed hyperbolic surface subgroups. It is known that a right-angled Artin group $A(K)$ has such a subgroup if its defining graph $K$ contains an $n$-hole (i.e. an induced cycle of l ength $n$) with $ngeq 5$. We construct another eight forbidden graphs and show that every graph $K$ on $le 8$ vertices either contains one of our examples, or contains a hole of length $ge 5$, or has the property that $A(K)$ does not contain hyperbolic closed surface subgroups. We also provide several sufficient conditions for a RAAG to contain no hyperbolic surface subgroups. We prove that for one of these forbidden subgraphs $P_2(6)$, the right angled Artin group $A(P_2(6))$ is a subgroup of a (right angled Artin) diagram group. Thus we show that a diagram group can contain a non-free hyperbolic subgroup answering a question of Guba and Sapir. We also show that fundamental groups of non-orientable surfaces can be subgroups of diagram groups. Thus the first integral homology of a subgroup of a diagram group can have torsion (all homology groups of all diagram groups are free Abelian by a result of Guba and Sapir).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا