ترغب بنشر مسار تعليمي؟ اضغط هنا

Contagion in simplicial complexes

151   0   0.0 ( 0 )
 نشر من قبل Karin Alfaro-Bittner
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The propagation of information in social, biological and technological systems represents a crucial component in their dynamic behavior. When limited to pairwise interactions, a rather firm grip is available on the relevant parameters and critical transitions of these spreading processes, most notably the pandemic transition, which indicates the conditions for the spread to cover a large fraction of the network. The challenge is that, in many relevant applications, the spread is driven by higher order relationships, in which several components undergo a group interaction. To address this, we analyze the spreading dynamics in a simplicial complex environment, designed to capture the coexistence of interactions of different orders. We find that, while pairwise interactions play a key role in the initial stages of the spread, once it gains coverage, higher order simplices take over and drive the contagion dynamics. The result is a distinctive spreading phase diagram, exhibiting a discontinuous pandemic transition, and hence offering a qualitative departure from the traditional network spreading dynamics.



قيم البحث

اقرأ أيضاً

Complex networks have been successfully used to describe the spread of diseases in populations of interacting individuals. Conversely, pairwise interactions are often not enough to characterize social contagion processes such as opinion formation or the adoption of novelties, where complex mechanisms of influence and reinforcement are at work. Here we introduce a higher-order model of social contagion in which a social system is represented by a simplicial complex and contagion can occur through interactions in groups of different sizes. Numerical simulations of the model on both empirical and synthetic simplicial complexes highlight the emergence of novel phenomena such as a discontinuous transition induced by higher-order interactions. We show analytically that the transition is discontinuous and that a bistable region appears where healthy and endemic states co-exist. Our results help explain why critical masses are required to initiate social changes and contribute to the understanding of higher-order interactions in complex systems.
Complex networks represent the natural backbone to study epidemic processes in populations of interacting individuals. Such a modeling framework, however, is naturally limited to pairwise interactions, making it less suitable to properly describe soc ial contagion, where individuals acquire new norms or ideas after simultaneous exposure to multiple sources of infections. Simplicial contagion has been proposed as an alternative framework where simplices are used to encode group interactions of any order. The presence of higher-order interactions leads to explosive epidemic transitions and bistability which cannot be obtained when only dyadic ties are considered. In particular, critical mass effects can emerge even for infectivity values below the standard pairwise epidemic threshold, where the size of the initial seed of infectious nodes determines whether the system would eventually fall in the endemic or the healthy state. Here we extend simplicial contagion to time-varying networks, where pairwise and higher-order simplices can be created or destroyed over time. By following a microscopic Markov chain approach, we find that the same seed of infectious nodes might or might not lead to an endemic stationary state, depending on the temporal properties of the underlying network structure, and show that persistent temporal interactions anticipate the onset of the endemic state in finite-size systems. We characterize this behavior on higher-order networks with a prescribed temporal correlation between consecutive interactions and on heterogeneous simplicial complexes, showing that temporality again limits the effect of higher-order spreading, but in a less pronounced way than for homogeneous structures. Our work suggests the importance of incorporating temporality, a realistic feature of many real-world systems, into the investigation of dynamical processes beyond pairwise interactions.
In the last years complex networks tools contributed to provide insights on the structure of research, through the study of collaboration, citation and co-occurrence networks. The network approach focuses on pairwise relationships, often compressing multidimensional data structures and inevitably losing information. In this paper we propose for the first time a simplicial complex approach to word co-occurrences, providing a natural framework for the study of higher-order relations in the space of scientific knowledge. Using topological methods we explore the conceptual landscape of mathematical research, focusing on homological holes, regions with low connectivity in the simplicial structure. We find that homological holes are ubiquitous, which suggests that they capture some essential feature of research practice in mathematics. Holes die when a subset of their concepts appear in the same article, hence their death may be a sign of the creation of new knowledge, as we show with some examples. We find a positive relation between the dimension of a hole and the time it takes to be closed: larger holes may represent potential for important advances in the field because they separate conceptually distant areas. We also show that authors conceptual entropy is positively related with their contribution to homological holes, suggesting that polymaths tend to be on the frontier of research.
In the spirit of topological entropy we introduce new complexity functions for general dynamical systems (namely groups and semigroups acting on closed manifolds) but with an emphasis on the dynamics induced on simplicial complexes. For expansive sys tems remarkable properties are observed. Known examples are revisited and new examples are presented.
Simplicial complexes are a versatile and convenient paradigm on which to build all the tools and techniques of the logic of knowledge, on the assumption that initial epistemic models can be described in a distributed fashion. Thus, we can define: kno wledge, belief, bisimulation, the group notions of mutual, distributed and common knowledge, and also dynamics in the shape of simplicial action models. We give a survey on how to interpret all such notions on simplicial complexes, building upon the foundations laid in prior work by Goubault and others.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا