ﻻ يوجد ملخص باللغة العربية
Complex networks represent the natural backbone to study epidemic processes in populations of interacting individuals. Such a modeling framework, however, is naturally limited to pairwise interactions, making it less suitable to properly describe social contagion, where individuals acquire new norms or ideas after simultaneous exposure to multiple sources of infections. Simplicial contagion has been proposed as an alternative framework where simplices are used to encode group interactions of any order. The presence of higher-order interactions leads to explosive epidemic transitions and bistability which cannot be obtained when only dyadic ties are considered. In particular, critical mass effects can emerge even for infectivity values below the standard pairwise epidemic threshold, where the size of the initial seed of infectious nodes determines whether the system would eventually fall in the endemic or the healthy state. Here we extend simplicial contagion to time-varying networks, where pairwise and higher-order simplices can be created or destroyed over time. By following a microscopic Markov chain approach, we find that the same seed of infectious nodes might or might not lead to an endemic stationary state, depending on the temporal properties of the underlying network structure, and show that persistent temporal interactions anticipate the onset of the endemic state in finite-size systems. We characterize this behavior on higher-order networks with a prescribed temporal correlation between consecutive interactions and on heterogeneous simplicial complexes, showing that temporality again limits the effect of higher-order spreading, but in a less pronounced way than for homogeneous structures. Our work suggests the importance of incorporating temporality, a realistic feature of many real-world systems, into the investigation of dynamical processes beyond pairwise interactions.
In this Chapter, we discuss the effects of higher-order structures on SIS-like processes of social contagion. After a brief motivational introduction where we illustrate the standard SIS process on networks and the difference between simple and compl
The propagation of information in social, biological and technological systems represents a crucial component in their dynamic behavior. When limited to pairwise interactions, a rather firm grip is available on the relevant parameters and critical tr
The metapopulation framework is adopted in a wide array of disciplines to describe systems of well separated yet connected subpopulations. The subgroups or patches are often represented as nodes in a network whose links represent the migration routes
The vast majority of strategies aimed at controlling contagion processes on networks considers the connectivity pattern of the system as either quenched or annealed. However, in the real world many networks are highly dynamical and evolve in time con
Simple models of infectious diseases tend to assume random mixing of individuals, but real interactions are not random pairwise encounters: they occur within various types of gatherings such as workplaces, households, schools, and concerts, best desc