ﻻ يوجد ملخص باللغة العربية
Radio frequency fingerprint identification (RFFI) is a promising device authentication technique based on the transmitter hardware impairments. In this paper, we propose a scalable and robust RFFI framework achieved by deep learning powered radio frequency fingerprint (RFF) extractor. Specifically, we leverage the deep metric learning to train an RFF extractor, which has excellent generalization ability and can extract RFFs from previously unseen devices. Any devices can be enrolled via the pre-trained RFF extractor and the RFF database can be maintained efficiently for allowing devices to join and leave. Wireless channel impacts the RFF extraction and is tackled by exploiting channel independent feature and data augmentation. We carried out extensive experimental evaluation involving 60 commercial off-the-shelf LoRa devices and a USRP N210 software defined radio platform. The results have successfully demonstrated that our framework can achieve excellent generalization abilities for device classification and rogue device detection as well as effective channel mitigation.
Radio frequency fingerprint identification (RFFI) is an emerging device authentication technique that relies on intrinsic hardware characteristics of wireless devices. We designed an RFFI scheme for Long Range (LoRa) systems based on spectrogram and
Radio Frequency Fingerprinting (RFF) is one of the promising passive authentication approaches for improving the security of the Internet of Things (IoT). However, with the proliferation of low-power IoT devices, it becomes imperative to improve the
Long Range (LoRa) has become one of the most popular Low Power Wide Area (LPWA) technologies, which provides a desirable trade-off among communication range, battery life, and deployment cost. In LoRa networks, several transmission parameters can be
For massive machine-type communications, centralized control may incur a prohibitively high overhead. Grant-free non-orthogonal multiple access (NOMA) provides possible solutions, yet poses new challenges for efficient receiver design. In this paper,
We consider the vector perturbation (VP) precoder design for multiuser multiple-input single output (MU-MISO) broadcast channel systems which is robust to power scaling factor errors. VP precoding has so far been developed and analyzed under the assu