ترغب بنشر مسار تعليمي؟ اضغط هنا

A Novel Rate and Channel Control Scheme Based on Data Extraction Rate for LoRa Networks

348   0   0.0 ( 0 )
 نشر من قبل Qihao Zhou
 تاريخ النشر 2019
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Long Range (LoRa) has become one of the most popular Low Power Wide Area (LPWA) technologies, which provides a desirable trade-off among communication range, battery life, and deployment cost. In LoRa networks, several transmission parameters can be allocated to ensure efficient and reliable communication. For example, the configuration of the spreading factor allows tuning the data rate and the transmission distance. However, how to dynamically adjust the setting that minimizes the collision probability while meeting the required communication performance is an open challenge. This paper proposes a novel Data Rate and Channel Control (DRCC) scheme for LoRa networks so as to improve wireless resource utilization and support a massive number of LoRa nodes. The scheme estimates channel conditions based on the short-term Data Extraction Rate (DER), and opportunistically adjusts the spreading factor to adapt the variation of channel conditions. Furthermore, the channel control is carried out to balance the link load of all available channels with the global information of the channel usage, which is able to lower the access collisions under dense deployments. Our experiments demonstrate that the proposed DRCC performs well on improving the reliability and capacity compared with other spreading factor allocation schemes in dense deployment scenarios.



قيم البحث

اقرأ أيضاً

109 - Hao Zhang , Fuhui Zhou , Qihui Wu 2021
Automatic modulation classification enables intelligent communications and it is of crucial importance in todays and future wireless communication networks. Although many automatic modulation classification schemes have been proposed, they cannot tac kle the intra-class diversity problem caused by the dynamic changes of the wireless communication environment. In order to overcome this problem, inspired by face recognition, a novel automatic modulation classification scheme is proposed by using the multi-scale network in this paper. Moreover, a novel loss function that combines the center loss and the cross entropy loss is exploited to learn both discriminative and separable features in order to further improve the classification performance. Extensive simulation results demonstrate that our proposed automatic modulation classification scheme can achieve better performance than the benchmark schemes in terms of the classification accuracy. The influence of the network parameters and the loss function with the two-stage training strategy on the classification accuracy of our proposed scheme are investigated.
124 - Hong Ren , Cunhua Pan , Kezhi Wang 2019
In this paper, we investigate the average achievable data rate (AADR) of the control information delivery from the ground control station (GCS) to unmanned-aerial-vehicle (UAV) under a 3-D channel, which requires ultra-reliable and low-latency commun ications (URLLC) to avoid collision. The value of AADR can give insights on the packet size design. Achievable data rate under short channel blocklength is adopted to characterize the system performance. The UAV is assumed to be uniformly distributed within a restricted space. We first adopt the Gaussian-Chebyshev quadrature (GCQ) to approximate the exact AADR. The tight lower bound of AADR is derived in a closed form. Numerical results verify the correctness and tightness of our derived results.
In this paper, we further expand on the work in [1] that focused on the localization of targets in a 2D space using 1-bit dithered measurements coming from a 2 receiving antennae radar. Our aim is to further reduce the hardware requirements and bit-r ate, by dropping one of the baseband IQ channel from each receiving antenna. To that end, the structure of the received signals is exploited to recover the positions of multiple targets. Simulations are performed to highlight the accuracy and limitations of the proposed scheme under severe bit-rate reduction.
106 - T. Kanda , T. Sato , H. Awano 2021
This paper presents a method that estimates the respiratory rate based on the frame capturing of wireless local area networks. The method uses beamforming feedback matrices (BFMs) contained in the captured frames, which is a rotation matrix of channe l state information (CSI). BFMs are transmitted unencrypted and easily obtained using frame capturing, requiring no specific firmware or WiFi chipsets, unlike the methods that use CSI. Such properties of BFMs allow us to apply frame capturing to various sensing tasks, e.g., vital sensing. In the proposed method, principal component analysis is applied to BFMs to isolate the effect of the chest movement of the subject, and then, discrete Fourier transform is performed to extract respiratory rates in a frequency domain. Experimental evaluation results confirm that the frame-capture-based respiratory rate estimation can achieve estimation error lower than 3.2 breaths/minute.
Several schemes for gain control are used for preventing saturation of receiver, and overloading of data processor, tracker or display in pulse radars. The use of digital processing techniques open the door to a variety of digital automatic gain cont rol schemes for analyzing digitized return signals and controlling receiver gain only at saturating clutter zones without affecting the detection at other zones. In this paper, we present a novel scheme of Digital Instantaneous Automatic Gain Control (DIAGC) which is based on storing digitally the dwell based clutter returns and deriving the gain control. The returns corresponding to the first two PRTs in a dwell are used to analyze the presence of saturating clutter zones and the depth of saturation. Third PRT onwards proper gain control is applied at the IF stage to prevent saturation of the following stages. FPGA based scheme is used for digital data processing, storing, threshold calculation and gain control generation. The effect of DIAGC on pulse compression is also addressed in this paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا