ترغب بنشر مسار تعليمي؟ اضغط هنا

Cooperative quantum phenomena in light-matter platforms

112   0   0.0 ( 0 )
 نشر من قبل Michael Reitz
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum cooperativity is evident in light-matter platforms where quantum emitter ensembles are interfaced with confined optical modes and are coupled via the ubiquitous electromagnetic quantum vacuum. Cooperative effects can find applications, among other areas, in topological quantum optics, in quantum metrology or in quantum information. This tutorial provides a set of theoretical tools to tackle the behavior responsible for the onset of cooperativity by extending open quantum system dynamics methods, such as the master equation and quantum Langevin equations, to electron-photon interactions in strongly coupled and correlated quantum emitter ensembles. The methods are illustrated on a wide range of current research topics such as the design of nanoscale coherent light sources, highly-reflective quantum metasurfaces or low intracavity power superradiant lasers. The analytical approaches are developed for ensembles of identical two-level quantum emitters and then extended to more complex systems where frequency disorder or vibronic couplings are taken into account. The relevance of the approach ranges from atoms in optical lattices to quantum dots or molecular systems in solid-state environments.



قيم البحث

اقرأ أيضاً

We analyze the coupling of atoms or atom-like emitters to nanophotonic waveguides in the presence of propagating acoustic waves. Specifically, we show that strong index modulations induced by such waves can drastically modify the effective photonic d ensity of states and thereby influence the strength, the directionality, as well as the overall characteristics of photon emission and absorption processes. These effects enable a complete dynamical control of light-matter interactions in waveguide structures, which even in a two dimensional system can be used to efficiently exchange individual photons along selected directions and with a very high fidelity. Such a quantum acousto-optical control provides a versatile tool for various quantum networking applications ranging from the distribution of entanglement via directional emitter-emitter interactions to the routing of individual photonic quantum states via acoustic conveyor belts.
Cavity-QED systems have recently reached a regime where the light-matter interaction strength amounts to a non-negligible fraction of the resonance frequencies of the bare subsystems. In this regime, it is known that the usual normal-order correlatio n functions for the cavity-photon operators fail to describe both the rate and the statistics of emitted photons. Following Glaubers original approach, we derive a simple and general quantum theory of photodetection, valid for arbitrary light-matter interaction strengths. Our derivation uses Fermis golden rule, together with an expansion of system operators in the eigenbasis of the interacting light-matter system, to arrive at the correct photodetection probabilities. We consider both narrow- and wide-band photodetectors. Our description is also valid for point-like detectors placed inside the optical cavity. As an application, we propose a gedanken experiment confirming the virtual nature of the bare excitations that enrich the ground state of the quantum Rabi model.
In the quantum process of stimulated Raman scattering (SRS), a laser photon propagating in a resonance medium undergoes multifold
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter. The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/ 2 and a spin $S$ transition metal ion, solely controlled by microwave pulses. The spin $S$ ion is exploited to encode the photon field in a flexible architecture, which enables the digital simulation of a wide range of spin-boson models much more efficiently than by using a multi-qubit register. The effectiveness of our proposal is demonstrated by numerical simulations using realistic molecular parameters, whose prerequisites delineating possible chemical approaches are also discussed.
The concept of parity describes the inversion symmetry of a system and is of fundamental relevance in the standard model, quantum information processing, and field theory. In quantum electrodynamics, parity is conserved and large field gradients are required to engineer the parity of the light-matter interaction operator. In this work, we engineer a potassium-like artificial atom represented by a specifically designed superconducting flux qubit. We control the wave function parity of the artificial atom with an effective orbital momentum provided by a resonator. By irradiating the artificial atom with spatially shaped microwave fields, we select the interaction parity in situ. In this way, we observe dipole and quadrupole selection rules for single state transitions and induce transparency via longitudinal coupling. Our work advances the design of tunable artificial multilevel atoms to a new level, which is particularly promising with respect to quantum chemistry simulations with near-term superconducting circuits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا