ﻻ يوجد ملخص باللغة العربية
Quantum cooperativity is evident in light-matter platforms where quantum emitter ensembles are interfaced with confined optical modes and are coupled via the ubiquitous electromagnetic quantum vacuum. Cooperative effects can find applications, among other areas, in topological quantum optics, in quantum metrology or in quantum information. This tutorial provides a set of theoretical tools to tackle the behavior responsible for the onset of cooperativity by extending open quantum system dynamics methods, such as the master equation and quantum Langevin equations, to electron-photon interactions in strongly coupled and correlated quantum emitter ensembles. The methods are illustrated on a wide range of current research topics such as the design of nanoscale coherent light sources, highly-reflective quantum metasurfaces or low intracavity power superradiant lasers. The analytical approaches are developed for ensembles of identical two-level quantum emitters and then extended to more complex systems where frequency disorder or vibronic couplings are taken into account. The relevance of the approach ranges from atoms in optical lattices to quantum dots or molecular systems in solid-state environments.
We analyze the coupling of atoms or atom-like emitters to nanophotonic waveguides in the presence of propagating acoustic waves. Specifically, we show that strong index modulations induced by such waves can drastically modify the effective photonic d
Cavity-QED systems have recently reached a regime where the light-matter interaction strength amounts to a non-negligible fraction of the resonance frequencies of the bare subsystems. In this regime, it is known that the usual normal-order correlatio
In the quantum process of stimulated Raman scattering (SRS), a laser photon propagating in a resonance medium undergoes multifold
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter. The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/
The concept of parity describes the inversion symmetry of a system and is of fundamental relevance in the standard model, quantum information processing, and field theory. In quantum electrodynamics, parity is conserved and large field gradients are