ﻻ يوجد ملخص باللغة العربية
We analyze the coupling of atoms or atom-like emitters to nanophotonic waveguides in the presence of propagating acoustic waves. Specifically, we show that strong index modulations induced by such waves can drastically modify the effective photonic density of states and thereby influence the strength, the directionality, as well as the overall characteristics of photon emission and absorption processes. These effects enable a complete dynamical control of light-matter interactions in waveguide structures, which even in a two dimensional system can be used to efficiently exchange individual photons along selected directions and with a very high fidelity. Such a quantum acousto-optical control provides a versatile tool for various quantum networking applications ranging from the distribution of entanglement via directional emitter-emitter interactions to the routing of individual photonic quantum states via acoustic conveyor belts.
Quantum light-matter interfaces (QLMIs) connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching, and studies of fundamental physics. Rare-earth-ion (REI) doped cry
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter. The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/
We report the development of a superconducting acousto-optic phase modulator fabricated on a lithium niobate substrate. A titanium-diffused optical waveguide is placed in a surface acoustic wave resonator, where the electrodes for mirrors and an inte
We demonstrate a multiphoton Rydberg dark resonance where a Lambda-system is coupled to a Rydberg state. This N-type level scheme combines the ability to slow and store light pulses associated with long lived ground state superpositions, with the str
Modern communication networks require high performance and scalable electro-optic modulators that convert electrical signals to optical signals at high speed. Existing lithium niobate modulators have excellent performance but are bulky and prohibitiv