ﻻ يوجد ملخص باللغة العربية
This work studies a two-component Fornberg-Whitham (FW) system, which can be considered as a model for the propagation of shallow water waves. Its known that its solutions depend continuously on their initial data from the local well-posedness result. In this paper, we further show that such dependence is not uniformly continuous in $H^{s}(R)times H^{s-1}(R)$ for $s>frac{3}{2}$, but H{o}ler continuous in a weaker topology. Besides, we also establish that the FW system is ill-posed in the critical Sobolev space $H^{frac{3}{2}}(R)times H^{frac{1}{2}}(R)$ by proving the norm inflation.
In this paper, we first establish the local well-posedness (existence, uniqueness and continuous dependence) for the Fornberg-Whitham equation in both supercritical Besov spaces $B^s_{p,r}, s>1+frac{1}{p}, 1leq p,rleq+infty$ and critical Besov spaces
Norm inflation implies certain discontinuous dependence of the solution on the initial value. The well-posedness of the mild solution means the existence and uniqueness of the fixed points of the corresponding integral equation. For ${rm BMO}^{-1}$,
The aim of this article is to prove new ill-posedness results concerning the nonlinear good Boussinesq equation, for both the periodic and non-periodic initial value problems. Specifically, we prove that the associated flow map is not continuous in Sobolev spaces $H^s$, for all $s<-1/2$.
In this article we present ill-posedness results for generalized Boussinesq equations, which incorporate also the ones obtained by the authors for the classical good Boussinesq equation (arXiv:1202.6671). More precisely, we show that the associated f
In this paper, we investigate the problem of optimal regularity for derivative semilinear wave equations to be locally well-posed in $H^{s}$ with spatial dimension $n leq 5$. We show this equation, with power $2le ple 1+4/(n-1)$, is (strongly) ill-po