ﻻ يوجد ملخص باللغة العربية
Norm inflation implies certain discontinuous dependence of the solution on the initial value. The well-posedness of the mild solution means the existence and uniqueness of the fixed points of the corresponding integral equation. For ${rm BMO}^{-1}$, Auscher-Dubois-Tchamitchian proved that Koch-Tatarus solution is stable. In this paper, we construct a non-Gauss flow function to show that, for classic Navier-Stokes equations, wellposedness and norm inflation may have no conflict and stability may have meaning different to $L^{infty}(({rm BMO}^{-1})^{n})$.
We prove that, for some irrational torus, the flow map of the periodic fifth-order KP-I equation is not locally uniformly continuous on the energy space, even on the hyperplanes of fixed x-mean value.
We analyze the stability properties of the so-called triple deck model, a classical refinement of the Prandtl equation to describe boundary layer separation. Combining the methodology introduced in [2], based on complex analysis tools, and stability
In this article we present ill-posedness results for generalized Boussinesq equations, which incorporate also the ones obtained by the authors for the classical good Boussinesq equation (arXiv:1202.6671). More precisely, we show that the associated f
In this paper, we investigate the problem of optimal regularity for derivative semilinear wave equations to be locally well-posed in $H^{s}$ with spatial dimension $n leq 5$. We show this equation, with power $2le ple 1+4/(n-1)$, is (strongly) ill-po
The aim of this article is to prove new ill-posedness results concerning the nonlinear good Boussinesq equation, for both the periodic and non-periodic initial value problems. Specifically, we prove that the associated flow map is not continuous in Sobolev spaces $H^s$, for all $s<-1/2$.