ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulsating chromosphere of classical Cepheids. Calcium infrared triplet and H$alpha$ profile variations

433   0   0.0 ( 0 )
 نشر من قبل Vincent Hocd\\'e
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been shown recently that the infrared emission of Cepheids, which is constant over the pulsation cycle, might be due to a pulsating shell of ionized gas of about 15% of the stellar radius, which could be attributed to the chromospheric activity of Cepheids. The aim of this paper is to investigate the dynamical structure of the chromosphere of Cepheids along the pulsation cycle and quantify its size. We present H$alpha$ and Calcium Near InfraRed triplet (Ca IR) profile variations using high-resolution spectroscopy with the UVES spectrograph of a sample of 24 Cepheids with a good period coverage from $approx$ 3 to 60 days. After a qualitative analysis of the spectral lines profiles, we quantify the Van Hoof effect (velocity gradient between the H$alpha$ and Ca IR) as a function of the period of the Cepheids. Then, we use the Schwarzschild mechanism (a line doubling due to a shock wave) to quantify the size of the chromosphere. We find a significant Van Hoof effect for Cepheids with period larger than $P=10$ days, in particular H$alpha$ lines are delayed with a velocity gradient up to $Delta v approx$30 km/s compared to Ca IR. We find that the size of the chromosphere of long-period Cepheids is of at least $approx$ 50% of the stellar radius, which is consistent at first order with the size of the shell made of ionized gas previously found from the analysis of infrared excess. Last, for most of the long-period Cepheids in the sample, we report a motionless absorption feature in the H$alpha$ line that we attribute to a circumstellar envelope that surrounds the chromosphere. Analyzing the Ca~IR lines of Cepheids is of importance to potentially unbias the period-luminosity relation from their infrared excess, particularly in the context of forthcoming observations from the Radial Velocity Spectrometer (RVS) on board textit{Gaia}, that could be sensitive to their chromosphere.



قيم البحث

اقرأ أيضاً

Abridged: Alpha Virginis is a binary system whose proximity and brightness allow detailed investigations of the internal structure and evolution of stars undergoing time-variable tidal interactions. Previous studies have led to the conclusion that th e internal structure of Spicas primary star may be more centrally condensed than predicted by theoretical models of single stars, raising the possibility that the interactions could lead to effects that are currently neglected in structure and evolution calculations. The key parameters in confirming this result are the values of the orbital eccentricity $e$, the apsidal period $U$, and the primary stars radius, R_1. We analyze the impact that line profile variability has on the derivation of its orbital elements and R_1. We use high SNR observations obtained in 2000, 2008, and 2013 to derive the orbital elements from fits to the radial velocity curves. We produce synthetic line profiles using an ab initio tidal interaction model. Results: The variations in the line profiles can be understood in terms of the tidal flows, whose large-scale structure is relatively fixed in the rotating binary system reference frame. Fits to the radial velocity curves yield $e$=0.108$pm$0.014. However, the analogous RV curves from theoretical line profiles indicate that the distortion in the lines causes the fitted value of $e$ to depend on the argument of periastron; i.e., on the epoch of observation. As a result, the actual value of $e$ may be as high as 0.125. We find that $U$=117.9$pm$1.8, which is in agreement with previous determinations. Using the value $R_1=6.8 R_odot$ derived by Palate et al. (2013) the value of the observational internal structure constant $k_{2,obs}$ is consistent with theory. We confirm the presence of variability in the line profiles of the secondary star.
Young transiting exoplanets (< 100 Myr) provide crucial insight into atmospheric evolution via photoevaporation. However, transmission spectroscopy measurements to determine atmospheric composition and mass loss are challenging due to the activity an d prominent stellar disk inhomogeneities present on young stars. We observed a full transit of V1298 Tau c, a 23 Myr, 5.59$R_oplus$ planet orbiting a young K0-K1.5 solar analogue with GRACES on Gemini-North. We were able to measure the Doppler tomographic signal of V1298 Tau c using the Ca II infrared triplet (IRT) and find a projected obliquity of $lambda = 5^circ pm 15^circ$. The tomographic signal is only seen in the chromospherically driven core of the Ca II IRT, which may be the result of star-planet interactions. Additionally, we find that excess absorption of the H-alpha line decreases smoothly during the transit. While this could be a tentative detection of hot gas escaping the planet, we find this variation is consistent with similar timescale observations of other young stars that lack transiting planets over similar timescales. We show this variation can also be explained by the presence of starspots with surrounding facular regions. More observations both in- and out-of the transits of V1298 Tau c are required to determine the nature of the Ca II IRT and H-alpha line variations.
115 - J. Koza 2017
Accurate knowledge of the spectral transmission profile of a Lyot filter is important, in particular in comparing observations with simulated data. The paper summarizes available facts about the transmission profile of the DOT H$alpha$ Lyot filter po inting to a discrepancy between sidelobe-free Gaussian-like profile measured spectroscopically and signatures of possible leakage of parasitic continuum light in DOT H$alpha$ images. We compute wing-to-center intensity ratios resulting from convolutions of Gaussian and square of the sinc function with the H$alpha$ atlas profile and compare them with the ratios derived from observations of the quiet Sun chromosphere at disk center. We interpret discrepancies between the anticipated and observed ratios and the sharp limb visible in the DOT H$alpha$ image as an indication of possible leakage of parasitic continuum light. A method suggested here can be applied also to indirect testing of transmission profiles of other Lyot filters. We suggest two theoretical transmission profiles of the DOT H$alpha$ Lyot filter which should be considered as the best available approximations. Conclusive answer can only be given by spectroscopic re-measurement of the filter.
The broad (FWHM ~ 10,000 km/s) double-peaked H{alpha} profile from the LINER/Seyfert 1 nucleus of NGC 1097 was discovered in 1991, and monitored for the following 11 years. The profile showed variations attributed to the rotation of gas in a non-axis ymmetric Keplerian accretion disk, ionized by a varying radiatively inefficient accretion flow (RIAF) located in the inner parts of the disk. We present and model 11 new spectroscopic observations of the double-peaked profile taken between 2010 March and 2011 March. This series of observations was motivated by the finding that in 2010 March the flux in the double-peaked line was again strong, becoming, in 2010 December, even stronger than in the observations of a decade ago. We also discovered shorter timescale variations than in the previous observations: (1) the first, of ~7 days, is interpreted as due to reverberation of the variation of the ionizing source luminosity, and the timescale of 7 days as the light crossing time between the source and the accretion disk; this new timescale and its interpretation provides a distance between the emitting gas and the supermassive black hole and as such introduces a new constraint on its mass; (2) the second, of approximately 5 months, was attributed to the rotation of a spiral arm in the disk, which was found to occur on the dynamical timescale. We use two accretion disk models to fit theoretical profiles to the new data, both having non-axisymmetric emissivities produced by the presence of an one-armed spiral. Our modeling constrains the rotation period for the spiral to be approximately 18 months. This work supports our previous conclusion that the broad double-peaked Balmer emission lines in NGC 1097, and probably also in other low-luminosity active nuclei, originate from an accretion disk ionized by a central RIAF.
We report on H-alpha spectroscopy of the 2009.0 spectroscopic event of eta Carinae collected via SMARTS observations using the CTIO 1.5 m telescope and echelle spectrograph. Our observations were made almost every night over a two month interval arou nd the predicted minimum of eta Car. We observed a significant fading of the line emission that reached a minimum seven days after the X-ray minimum. About 17 d prior to the H-alpha flux minimum, the H-alpha profile exhibited the emergence of a broad, P Cygni type, absorption component (near a Doppler shift of -500 km/s) and a narrow absorption component (near -144 km/s and probably associated with intervening gas from the Little Homunculus Nebula). All these features were observed during the last event in 2003.5 and are probably related to the close periastron passage of the companion. We argue that these variations are consistent with qualitative expectations about changes in the primary stars stellar wind that result from the wind-wind collision with a massive binary companion and from atmospheric eclipses of the companion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا