ترغب بنشر مسار تعليمي؟ اضغط هنا

A Survey on Deep Learning Technique for Video Segmentation

104   0   0.0 ( 0 )
 نشر من قبل Wenguan Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Video segmentation, i.e., partitioning video frames into multiple segments or objects, plays a critical role in a broad range of practical applications, e.g., visual effect assistance in movie, scene understanding in autonomous driving, and virtual background creation in video conferencing, to name a few. Recently, due to the renaissance of connectionism in computer vision, there has been an influx of numerous deep learning based approaches that have been dedicated to video segmentation and delivered compelling performance. In this survey, we comprehensively review two basic lines of research in this area, i.e., generic object segmentation (of unknown categories) in videos and video semantic segmentation, by introducing their respective task settings, background concepts, perceived need, development history, and main challenges. We also provide a detailed overview of representative literature on both methods and datasets. Additionally, we present quantitative performance comparisons of the reviewed methods on benchmark datasets. At last, we point out a set of unsolved open issues in this field, and suggest possible opportunities for further research.



قيم البحث

اقرأ أيضاً

Anomaly detection in videos is a problem that has been studied for more than a decade. This area has piqued the interest of researchers due to its wide applicability. Because of this, there has been a wide array of approaches that have been proposed throughout the years and these approaches range from statistical-based approaches to machine learning-based approaches. Numerous surveys have already been conducted on this area but this paper focuses on providing an overview on the recent advances in the field of anomaly detection using Deep Learning. Deep Learning has been applied successfully in many fields of artificial intelligence such as computer vision, natural language processing and more. This survey, however, focuses on how Deep Learning has improved and provided more insights to the area of video anomaly detection. This paper provides a categorization of the different Deep Learning approaches with respect to their objectives. Additionally, it also discusses the commonly used datasets along with the common evaluation metrics. Afterwards, a discussion synthesizing all of the recent approaches is made to provide direction and possible areas for future research.
The ability to predict, anticipate and reason about future outcomes is a key component of intelligent decision-making systems. In light of the success of deep learning in computer vision, deep-learning-based video prediction emerged as a promising re search direction. Defined as a self-supervised learning task, video prediction represents a suitable framework for representation learning, as it demonstrated potential capabilities for extracting meaningful representations of the underlying patterns in natural videos. Motivated by the increasing interest in this task, we provide a review on the deep learning methods for prediction in video sequences. We firstly define the video prediction fundamentals, as well as mandatory background concepts and the most used datasets. Next, we carefully analyze existing video prediction models organized according to a proposed taxonomy, highlighting their contributions and their significance in the field. The summary of the datasets and methods is accompanied with experimental results that facilitate the assessment of the state of the art on a quantitative basis. The paper is summarized by drawing some general conclusions, identifying open research challenges and by pointing out future research directions.
Low-light image enhancement (LLIE) aims at improving the perception or interpretability of an image captured in an environment with poor illumination. Recent advances in this area are dominated by deep learning-based solutions, where many learning st rategies, network structures, loss functions, training data, etc. have been employed. In this paper, we provide a comprehensive survey to cover various aspects ranging from algorithm taxonomy to unsolved open issues. To examine the generalization of existing methods, we propose a large-scale low-light image and video dataset, in which the images and videos are taken by different mobile phones cameras under diverse illumination conditions. Besides, for the first time, we provide a unified online platform that covers many popular LLIE methods, of which the results can be produced through a user-friendly web interface. In addition to qualitative and quantitative evaluation of existing methods on publicly available and our proposed datasets, we also validate their performance in face detection in the dark. This survey together with the proposed dataset and online platform could serve as a reference source for future study and promote the development of this research field. The proposed platform and the collected methods, datasets, and evaluation metrics are publicly available and will be regularly updated at https://github.com/Li-Chongyi/Lighting-the-Darkness-in-the-Deep-Learning-Era-Open. Our low-light image and video dataset is also available.
Modeling temporal visual context across frames is critical for video instance segmentation (VIS) and other video understanding tasks. In this paper, we propose a fast online VIS model named CrossVIS. For temporal information modeling in VIS, we prese nt a novel crossover learning scheme that uses the instance feature in the current frame to pixel-wisely localize the same instance in other frames. Different from previous schemes, crossover learning does not require any additional network parameters for feature enhancement. By integrating with the instance segmentation loss, crossover learning enables efficient cross-frame instance-to-pixel relation learning and brings cost-free improvement during inference. Besides, a global balanced instance embedding branch is proposed for more accurate and more stable online instance association. We conduct extensive experiments on three challenging VIS benchmarks, ie, YouTube-VIS-2019, OVIS, and YouTube-VIS-2021 to evaluate our methods. To our knowledge, CrossVIS achieves state-of-the-art performance among all online VIS methods and shows a decent trade-off between latency and accuracy. Code will be available to facilitate future research.
In this work we introduce a time- and memory-efficient method for structured prediction that couples neuron decisions across both space at time. We show that we are able to perform exact and efficient inference on a densely connected spatio-temporal graph by capitalizing on recent advances on deep Gaussian Conditional Random Fields (GCRFs). Our method, called VideoGCRF is (a) efficient, (b) has a unique global minimum, and (c) can be trained end-to-end alongside contemporary deep networks for video understanding. We experiment with multiple connectivity patterns in the temporal domain, and present empirical improvements over strong baselines on the tasks of both semantic and instance segmentation of videos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا