ترغب بنشر مسار تعليمي؟ اضغط هنا

Crossover Learning for Fast Online Video Instance Segmentation

159   0   0.0 ( 0 )
 نشر من قبل Yuxin Fang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Modeling temporal visual context across frames is critical for video instance segmentation (VIS) and other video understanding tasks. In this paper, we propose a fast online VIS model named CrossVIS. For temporal information modeling in VIS, we present a novel crossover learning scheme that uses the instance feature in the current frame to pixel-wisely localize the same instance in other frames. Different from previous schemes, crossover learning does not require any additional network parameters for feature enhancement. By integrating with the instance segmentation loss, crossover learning enables efficient cross-frame instance-to-pixel relation learning and brings cost-free improvement during inference. Besides, a global balanced instance embedding branch is proposed for more accurate and more stable online instance association. We conduct extensive experiments on three challenging VIS benchmarks, ie, YouTube-VIS-2019, OVIS, and YouTube-VIS-2021 to evaluate our methods. To our knowledge, CrossVIS achieves state-of-the-art performance among all online VIS methods and shows a decent trade-off between latency and accuracy. Code will be available to facilitate future research.



قيم البحث

اقرأ أيضاً

Single-stage instance segmentation approaches have recently gained popularity due to their speed and simplicity, but are still lagging behind in accuracy, compared to two-stage methods. We propose a fast single-stage instance segmentation method, cal led SipMask, that preserves instance-specific spatial information by separating mask prediction of an instance to different sub-regions of a detected bounding-box. Our main contribution is a novel light-weight spatial preservation (SP) module that generates a separate set of spatial coefficients for each sub-region within a bounding-box, leading to improved mask predictions. It also enables accurate delineation of spatially adjacent instances. Further, we introduce a mask alignment weighting loss and a feature alignment scheme to better correlate mask prediction with object detection. On COCO test-dev, our SipMask outperforms the existing single-stage methods. Compared to the state-of-the-art single-stage TensorMask, SipMask obtains an absolute gain of 1.0% (mask AP), while providing a four-fold speedup. In terms of real-time capabilities, SipMask outperforms YOLACT with an absolute gain of 3.0% (mask AP) under similar settings, while operating at comparable speed on a Titan Xp. We also evaluate our SipMask for real-time video instance segmentation, achieving promising results on YouTube-VIS dataset. The source code is available at https://github.com/JialeCao001/SipMask.
Online video object segmentation is a challenging task as it entails to process the image sequence timely and accurately. To segment a target object through the video, numerous CNN-based methods have been developed by heavily finetuning on the object mask in the first frame, which is time-consuming for online applications. In this paper, we propose a fast and accurate video object segmentation algorithm that can immediately start the segmentation process once receiving the images. We first utilize a part-based tracking method to deal with challenging factors such as large deformation, occlusion, and cluttered background. Based on the tracked bounding boxes of parts, we construct a region-of-interest segmentation network to generate part masks. Finally, a similarity-based scoring function is adopted to refine these object parts by comparing them to the visual information in the first frame. Our method performs favorably against state-of-the-art algorithms in accuracy on the DAVIS benchmark dataset, while achieving much faster runtime performance.
177 - Yajun Xu , Shogo Arai , Diyi Liu 2020
Instance segmentation is an important pre-processing task in numerous real-world applications, such as robotics, autonomous vehicles, and human-computer interaction. Compared with the rapid development of deep learning for two-dimensional (2D) image tasks, deep learning-based instance segmentation of 3D point cloud still has a lot of room for development. In particular, distinguishing a large number of occluded objects of the same class is a highly challenging problem, which is seen in a robotic bin-picking. In a usual bin-picking scene, many indentical objects are stacked together and the model of the objects is known. Thus, the semantic information can be ignored; instead, the focus in the bin-picking is put on the segmentation of instances. Based on this task requirement, we propose a Fast Point Cloud Clustering (FPCC) for instance segmentation of bin-picking scene. FPCC includes a network named FPCC-Net and a fast clustering algorithm. FPCC-net has two subnets, one for inferring the geometric centers for clustering and the other for describing features of each point. FPCC-Net extracts features of each point and infers geometric center points of each instance simultaneously. After that, the proposed clustering algorithm clusters the remaining points to the closest geometric center in feature embedding space. Experiments show that FPCC also surpasses the existing works in bin-picking scenes and is more computationally efficient. Our code and data are available at https://github.com/xyjbaal/FPCC.
Panoptic segmentation requires segments of both things (countable object instances) and stuff (uncountable and amorphous regions) within a single output. A common approach involves the fusion of instance segmentation (for things) and semantic segment ation (for stuff) into a non-overlapping placement of segments, and resolves overlaps. However, instance ordering with detection confidence do not correlate well with natural occlusion relationship. To resolve this issue, we propose a branch that is tasked with modeling how two instance masks should overlap one another as a binary relation. Our method, named OCFusion, is lightweight but particularly effective in the instance fusion process. OCFusion is trained with the ground truth relation derived automatically from the existing dataset annotations. We obtain state-of-the-art results on COCO and show competitive results on the Cityscapes panoptic segmentation benchmark.
Many of the recent successful methods for video object segmentation (VOS) are overly complicated, heavily rely on fine-tuning on the first frame, and/or are slow, and are hence of limited practical use. In this work, we propose FEELVOS as a simple an d fast method which does not rely on fine-tuning. In order to segment a video, for each frame FEELVOS uses a semantic pixel-wise embedding together with a global and a local matching mechanism to transfer information from the first frame and from the previous frame of the video to the current frame. In contrast to previous work, our embedding is only used as an internal guidance of a convolutional network. Our novel dynamic segmentation head allows us to train the network, including the embedding, end-to-end for the multiple object segmentation task with a cross entropy loss. We achieve a new state of the art in video object segmentation without fine-tuning with a J&F measure of 71.5% on the DAVIS 2017 validation set. We make our code and models available at https://github.com/tensorflow/models/tree/master/research/feelvos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا