ﻻ يوجد ملخص باللغة العربية
Planning for the protection of species often involves difficult choices about which species to prioritize, given constrained resources. One way of prioritizing species is to consider their evolutionary distinctiveness, i.e. their relative evolutionary isolation on a phylogenetic tree. Several evolutionary isolation metrics or phylogenetic diversity indices have been introduced in the literature, among them the so-called Fair Proportion index (also known as the evolutionary distinctiveness score). This index apportions the total diversity of a tree among all leaves, thereby providing a simple prioritization criterion for conservation. Here, we focus on the prioritization order obtained from the Fair Proportion index and analyze the effects of species extinction on this ranking. More precisely, we analyze the extent to which the ranking order may change when some species go extinct and the Fair Proportion index is re-computed for the remaining taxa. We show that for each phylogenetic tree, there are edge lengths such that the extinction of one leaf per cherry completely reverses the ranking. Moreover, we show that even if only the lowest ranked species goes extinct, the ranking order may drastically change. We end by analyzing the effects of these two extinction scenarios (extinction of the lowest ranked species and extinction of one leaf per cherry) for a collection of empirical and simulated trees. In both cases, we can observe significant changes in the prioritization orders, highlighting the empirical relevance of our theoretical findings.
Phylogenetic Diversity (PD) is a prominent quantitative measure of the biodiversity of a collection of present-day species (taxa). This measure is based on the evolutionary distance among the species in the collection. Loosely speaking, if $mathcal{T
Phylogenetic diversity indices provide a formal way to apportion evolutionary heritage across species. Two natural diversity indices are Fair Proportion (FP) and Equal Splits (ES). FP is also called evolutionary distinctiveness and, for rooted trees,
We derive an invertible transform linking two widely used measures of species diversity: phylogenetic diversity and the expected proportions of segregating (non-constant) sites. We assume a bi-allelic, symmetric, finite site model of substitution. Li
Phylogenetic networks are generalizations of phylogenetic trees that allow the representation of reticulation events such as horizontal gene transfer or hybridization, and can also represent uncertainty in inference. A subclass of these, tree-based p
Phylogenetic networks are a generalization of phylogenetic trees allowing for the representation of non-treelike evolutionary events such as hybridization. Typically, such networks have been analyzed based on their `level, i.e. based on the complexit