ﻻ يوجد ملخص باللغة العربية
Phylogenetic diversity indices provide a formal way to apportion evolutionary heritage across species. Two natural diversity indices are Fair Proportion (FP) and Equal Splits (ES). FP is also called evolutionary distinctiveness and, for rooted trees, is identical to the Shapley Value (SV), which arises from cooperative game theory. In this paper, we investigate the extent to which FP and ES can differ, characterise tree shapes on which the indices are identical, and study the equivalence of FP and SV and its implications in more detail. We also define and investigate analogues of these indices on unrooted trees (where SV was originally defined), including an index that is closely related to the Pauplin representation of phylogenetic diversity.
Phylogenetic Diversity (PD) is a prominent quantitative measure of the biodiversity of a collection of present-day species (taxa). This measure is based on the evolutionary distance among the species in the collection. Loosely speaking, if $mathcal{T
Planning for the protection of species often involves difficult choices about which species to prioritize, given constrained resources. One way of prioritizing species is to consider their evolutionary distinctiveness, i.e. their relative evolutionar
We derive an invertible transform linking two widely used measures of species diversity: phylogenetic diversity and the expected proportions of segregating (non-constant) sites. We assume a bi-allelic, symmetric, finite site model of substitution. Li
Phylogenetic networks are generalizations of phylogenetic trees that allow the representation of reticulation events such as horizontal gene transfer or hybridization, and can also represent uncertainty in inference. A subclass of these, tree-based p
Phylogenetic networks are a generalization of phylogenetic trees allowing for the representation of non-treelike evolutionary events such as hybridization. Typically, such networks have been analyzed based on their `level, i.e. based on the complexit