ترغب بنشر مسار تعليمي؟ اضغط هنا

How many FIDO protocols are needed? Surveying the design, security and market perspectives

63   0   0.0 ( 0 )
 نشر من قبل Ilias Politis Dr
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Unequivocally, a single man in possession of a strong password is not enough to solve the issue of security. Studies indicate that passwords have been subjected to various attacks, regardless of the applied protection mechanisms due to the human factor. The keystone for the adoption of more efficient authentication methods by the different markets is the trade-off between security and usability. To bridge the gap between user-friendly interfaces and advanced security features, the Fast Identity Online (FIDO) alliance defined several authentication protocols. Although FIDOs biometric-based authentication is not a novel concept, still daunts end users and developers, which may be a contributor factor obstructing FIDOs complete dominance of the digital authentication market. This paper traces the evolution of FIDO protocols, by identifying the technical characteristics and security requirements of the FIDO protocols throughout the differe



قيم البحث

اقرأ أيضاً

From a practical perspective it is advantageous to develop experimental methods that verify entanglement in quantum states with as few measurements as possible. In this paper we investigate the minimal number of measurements needed to detect bound en tanglement in bipartite $(dtimes d)$-dimensional states, i.e. entangled states that are positive under partial transposition. In particular, we show that a class of entanglement witnesses composed of mutually unbiased bases (MUBs) can detect bound entanglement if the number of measurements is greater than $d/2+1$. This is a substantial improvement over other detection methods, requiring significantly fewer resources than either full quantum state tomography or measuring a complete set of $d+1$ MUBs. Our approach is based on a partial characterisation of the (non-)decomposability of entanglement witnesses. We show that non-decomposability is a universal property of MUBs, which holds regardless of the choice of complementary observables, and we find that both the number of measurements and the structure of the witness play an important role in the detection of bound entanglement.
141 - R. Corin , S. Etalle , P.H. Hartel 2005
We propose a method for engineering security protocols that are aware of timing aspects. We study a simplified version of the well-known Needham Schroeder protocol and the complete Yahalom protocol, where timing information allows the study of differ ent attack scenarios. We model check the protocols using UPPAAL. Further, a taxonomy is obtained by studying and categorising protocols from the well known Clark Jacob library and the Security Protocol Open Repository (SPORE) library. Finally, we present some new challenges and threats that arise when considering time in the analysis, by providing a novel protocol that uses time challenges and exposing a timing attack over an implementation of an existing security protocol.
It is widely believed that the practical success of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) owes to the fact that CNNs and RNNs use a more compact parametric representation than their Fully-Connected Neural Network ( FNN) counterparts, and consequently require fewer training examples to accurately estimate their parameters. We initiate the study of rigorously characterizing the sample-complexity of estimating CNNs and RNNs. We show that the sample-complexity to learn CNNs and RNNs scales linearly with their intrinsic dimension and this sample-complexity is much smaller than for their FNN counterparts. For both CNNs and RNNs, we also present lower bounds showing our sample complexities are tight up to logarithmic factors. Our main technical tools for deriving these results are a localized empirical process analysis and a new technical lemma characterizing the convolutional and recurrent structure. We believe that these tools may inspire further developments in understanding CNNs and RNNs.
Knowledge flow analysis offers a simple and flexible way to find flaws in security protocols. A protocol is described by a collection of rules constraining the propagation of knowledge amongst principals. Because this characterization corresponds clo sely to informal descriptions of protocols, it allows a succinct and natural formalization; because it abstracts away message ordering, and handles communications between principals and applications of cryptographic primitives uniformly, it is readily represented in a standard logic. A generic framework in the Alloy modelling language is presented, and instantiated for two standard protocols, and a new key management scheme.
Modern web applications often rely on third-party services to provide their functionality to users. The secure integration of these services is a non-trivial task, as shown by the large number of attacks against Single Sign On and Cashier-as-a-Servic e protocols. In this paper we present Bulwark, a new automatic tool which generates formally verified security monitors from applied pi-calculus specifications of web protocols. The security monitors generated by Bulwark offer holistic protection, since they can be readily deployed both at the client side and at the server side, thus ensuring full visibility of the attack surface against web protocols. We evaluate the effectiveness of Bulwark by testing it against a pool of vulnerable web applications that use the OAuth 2.0 protocol or integrate the PayPal payment system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا