ﻻ يوجد ملخص باللغة العربية
We propose a method for engineering security protocols that are aware of timing aspects. We study a simplified version of the well-known Needham Schroeder protocol and the complete Yahalom protocol, where timing information allows the study of different attack scenarios. We model check the protocols using UPPAAL. Further, a taxonomy is obtained by studying and categorising protocols from the well known Clark Jacob library and the Security Protocol Open Repository (SPORE) library. Finally, we present some new challenges and threats that arise when considering time in the analysis, by providing a novel protocol that uses time challenges and exposing a timing attack over an implementation of an existing security protocol.
Knowledge flow analysis offers a simple and flexible way to find flaws in security protocols. A protocol is described by a collection of rules constraining the propagation of knowledge amongst principals. Because this characterization corresponds clo
Off-chain protocols constitute one of the most promising approaches to solve the inherent scalability issue of blockchain technologies. The core idea is to let parties transact on-chain only once to establish a channel between them, leveraging later
The Nakamoto longest chain protocol is remarkably simple and has been proven to provide security against any adversary with less than 50% of the total hashing power. Proof-of-stake (PoS) protocols are an energy efficient alternative; however existing
Modern web applications often rely on third-party services to provide their functionality to users. The secure integration of these services is a non-trivial task, as shown by the large number of attacks against Single Sign On and Cashier-as-a-Servic
We present WPSE, a browser-side security monitor for web protocols designed to ensure compliance with the intended protocol flow, as well as confidentiality and integrity properties of messages. We formally prove that WPSE is expressive enough to pro