ترغب بنشر مسار تعليمي؟ اضغط هنا

Fragmentation, Price Formation, and Cross-Impact in Bitcoin Markets

116   0   0.0 ( 0 )
 نشر من قبل Mihai Cucuringu
 تاريخ النشر 2021
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

In light of micro-scale inefficiencies induced by the high degree of fragmentation of the Bitcoin trading landscape, we utilize a granular data set comprised of orderbook and trades data from the most liquid Bitcoin markets, in order to understand the price formation process at sub-1 second time scales. To achieve this goal, we construct a set of features that encapsulate relevant microstructural information over short lookback windows. These features are subsequently leveraged first to generate a leader-lagger network that quantifies how markets impact one another, and then to train linear models capable of explaining between 10% and 37% of total variation in $500$ms future returns (depending on which market is the prediction target). The results are then compared with those of various PnL calculations that take trading realities, such as transaction costs, into account. The PnL calculations are based on natural $textit{taker}$ strategies (meaning they employ market orders) that we associate to each model. Our findings emphasize the role of a markets fee regime in determining its propensity to being a leader or a lagger, as well as the profitability of our taker strategy. Taking our analysis further, we also derive a natural $textit{maker}$ strategy (i.e., one that uses only passive limit orders), which, due to the difficulties associated with backtesting maker strategies, we test in a real-world live trading experiment, in which we turned over 1.5 million USD in notional volume. Lending additional confidence to our models, and by extension to the features they are based on, the results indicate a significant improvement over a naive benchmark strategy, which we also deploy in a live trading environment with real capital, for the sake of comparison.



قيم البحث

اقرأ أيضاً

We propose a dynamical theory of market liquidity that predicts that the average supply/demand profile is V-shaped and {it vanishes} around the current price. This result is generic, and only relies on mild assumptions about the order flow and on the fact that prices are (to a first approximation) diffusive. This naturally accounts for two striking stylized facts: first, large metaorders have to be fragmented in order to be digested by the liquidity funnel, leading to long-memory in the sign of the order flow. Second, the anomalously small local liquidity induces a breakdown of linear response and a diverging impact of small orders, explaining the square-root impact law, for which we provide additional empirical support. Finally, we test our arguments quantitatively using a numerical model of order flow based on the same minimal ingredients.
Executing a basket of co-integrated assets is an important task facing investors. Here, we show how to do this accounting for the informational advantage gained from assets within and outside the basket, as well as for the permanent price impact of m arket orders (MOs) from all market participants, and the temporary impact that the agents MOs have on prices. The execution problem is posed as an optimal stochastic control problem and we demonstrate that, under some mild conditions, the value function admits a closed-form solution, and prove a verification theorem. Furthermore, we use data of five stocks traded in the Nasdaq exchange to estimate the model parameters and use simulations to illustrate the performance of the strategy. As an example, the agent liquidates a portfolio consisting of shares in Intel Corporation (INTC) and Market Vectors Semiconductor ETF (SMH). We show that including the information provided by three additional assets, FARO Technologies (FARO), NetApp (NTAP) and Oracle Corporation (ORCL), considerably improves the strategys performance; for the portfolio we execute, it outperforms the multi-asset version of Almgren-Chriss by approximately 4 to 4.5 basis points.
Using the generalized extreme value theory to characterize tail distributions, we address liquidation, leverage, and optimal margins for bitcoin long and short futures positions. The empirical analysis of perpetual bitcoin futures on BitMEX shows tha t (1) daily forced liquidations to out- standing futures are substantial at 3.51%, and 1.89% for long and short; (2) investors got forced liquidation do trade aggressively with average leverage of 60X; and (3) exchanges should elevate current 1% margin requirement to 33% (3X leverage) for long and 20% (5X leverage) for short to reduce the daily margin call probability to 1%. Our results further suggest normality assumption on return significantly underestimates optimal margins. Policy implications are also discussed.
We consider a 2-dimensional marked Hawkes process with increasing baseline intensity in order to model prices on electricity intraday markets. This model allows to represent different empirical facts such as increasing market activity, random jump si zes but above all microstructure noise through the signature plot. This last feature is of particular importance for practitioners and has not yet been modeled on those particular markets. We provide analytic formulas for first and second moments and for the signature plot, extending the classic results of Bacry et al. (2013) in the context of Hawkes processes with random jump sizes and time dependent baseline intensity. The tractable model we propose is estimated on German data and seems to fit the data well. We also provide a result about the convergence of the price process to a Brownian motion with increasing volatility at macroscopic scales, highlighting the Samuelson effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا