ترغب بنشر مسار تعليمي؟ اضغط هنا

Resilient UAV Swarm Communications with Graph Convolutional Neural Network

137   0   0.0 ( 0 )
 نشر من قبل Zhiyu Mou
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the self-healing problem of unmanned aerial vehicle (UAV) swarm network (USNET) that is required to quickly rebuild the communication connectivity under unpredictable external disruptions (UEDs). Firstly, to cope with the one-off UEDs, we propose a graph convolutional neural network (GCN) and find the recovery topology of the USNET in an on-line manner. Secondly, to cope with general UEDs, we develop a GCN based trajectory planning algorithm that can make UAVs rebuild the communication connectivity during the self-healing process. We also design a meta learning scheme to facilitate the on-line executions of the GCN. Numerical results show that the proposed algorithms can rebuild the communication connectivity of the USNET more quickly than the existing algorithms under both one-off UEDs and general UEDs. The simulation results also show that the meta learning scheme can not only enhance the performance of the GCN but also reduce the time complexity of the on-line executions.

قيم البحث

اقرأ أيضاً

Graph convolutional neural networks (GCNNs) are a powerful extension of deep learning techniques to graph-structured data problems. We empirically evaluate several pooling methods for GCNNs, and combinations of those graph pooling methods with three different architectures: GCN, TAGCN, and GraphSAGE. We confirm that graph pooling, especially DiffPool, improves classification accuracy on popular graph classification datasets and find that, on average, TAGCN achieves comparable or better accuracy than GCN and GraphSAGE, particularly for datasets with larger and sparser graph structures.
113 - Jin Zheng , Qing Gao , Yanxuan Lv 2021
At present, there are a large number of quantum neural network models to deal with Euclidean spatial data, while little research have been conducted on non-Euclidean spatial data. In this paper, we propose a novel quantum graph convolutional neural n etwork (QGCN) model based on quantum parametric circuits and utilize the computing power of quantum systems to accomplish graph classification tasks in traditional machine learning. The proposed QGCN model has a similar architecture as the classical graph convolutional neural networks, which can illustrate the topology of the graph type data and efficiently learn the hidden layer representation of node features as well. Numerical simulation results on a graph dataset demonstrate that the proposed model can be effectively trained and has good performance in graph level classification tasks.
122 - Yuxiao Liu , Ning Zhang , Dan Wu 2020
Power system cascading failures become more time variant and complex because of the increasing network interconnection and higher renewable energy penetration. High computational cost is the main obstacle for a more frequent online cascading failure search, which is essential to improve system security. In this work, we show that the complex mechanism of cascading failures can be well captured by training a graph convolutional network (GCN) offline. Subsequently, the search of cascading failures can be significantly accelerated with the aid of the trained GCN model. We link the power network topology with the structure of the GCN, yielding a smaller parameter space to learn the complex mechanism. We further enable the interpretability of the GCN model by a layer-wise relevance propagation (LRP) algorithm. The proposed method is tested on both the IEEE RTS-79 test system and Chinas Henan Province power system. The results show that the GCN guided method can not only accelerate the search of cascading failures, but also reveal the reasons for predicting the potential cascading failures.
123 - T. Serizawa , H. Fujita 2020
Convolutional neural network (CNN) is one of the most frequently used deep learning techniques. Various forms of models have been proposed and improved for learning at CNN. When learning with CNN, it is necessary to determine the optimal hyperparamet ers. However, the number of hyperparameters is so large that it is difficult to do it manually, so much research has been done on automation. A method that uses metaheuristic algorithms is attracting attention in research on hyperparameter optimization. Metaheuristic algorithms are naturally inspired and include evolution strategies, genetic algorithms, antcolony optimization and particle swarm optimization. In particular, particle swarm optimization converges faster than genetic algorithms, and various models have been proposed. In this paper, we propose CNN hyperparameter optimization with linearly decreasing weight particle swarm optimization (LDWPSO). In the experiment, the MNIST data set and CIFAR-10 data set, which are often used as benchmark data sets, are used. By optimizing CNN hyperparameters with LDWPSO, learning the MNIST and CIFAR-10 datasets, we compare the accuracy with a standard CNN based on LeNet-5. As a result, when using the MNIST dataset, the baseline CNN is 94.02% at the 5th epoch, compared to 98.95% for LDWPSO CNN, which improves accuracy. When using the CIFAR-10 dataset, the Baseline CNN is 28.07% at the 10th epoch, compared to 69.37% for the LDWPSO CNN, which greatly improves accuracy.
70 - Tong Zhang 2018
In this paper, we propose a novel tensor graph convolutional neural network (TGCNN) to conduct convolution on factorizable graphs, for which here two types of problems are focused, one is sequential dynamic graphs and the other is cross-attribute gra phs. Especially, we propose a graph preserving layer to memorize salient nodes of those factorized subgraphs, i.e. cross graph convolution and graph pooling. For cross graph convolution, a parameterized Kronecker sum operation is proposed to generate a conjunctive adjacency matrix characterizing the relationship between every pair of nodes across two subgraphs. Taking this operation, then general graph convolution may be efficiently performed followed by the composition of small matrices, which thus reduces high memory and computational burden. Encapsuling sequence graphs into a recursive learning, the dynamics of graphs can be efficiently encoded as well as the spatial layout of graphs. To validate the proposed TGCNN, experiments are conducted on skeleton action datasets as well as matrix completion dataset. The experiment results demonstrate that our method can achieve more competitive performance with the state-of-the-art methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا