ﻻ يوجد ملخص باللغة العربية
We investigate the charge trapping during endurance fatigue of FeFET with TiN/Hf0.5Zr0.5O2/SiO2/Si (MFIS) gate structure. We propose a method of experimentally extracting the number of trapped charges during the memory operation, by measuring the charges in the metal gate and Si substrate. We verify that the amount of trapped charges increases during the endurance fatigue process. This is the first time that the trapped charges are directly experimentally extracted and verified to increase during endurance fatigue. Moreover, we model the interplay between the trapped charges and ferroelectric polarization switching during endurance fatigue. Through the consistency of experimental results and simulated data, we demonstrate that as the memory window decreases: 1) The ferroelectric characteristic of Hf0.5Zr0.5O2 is not degraded. 2) The trap density in the upper bandgap of the gate stacks increases. 3) The reason for memory window decrease is increased trapped electrons after program operation but not related to hole trapping/de-trapping. Our work is helpful to study the charge trapping behavior of FeFET and the related endurance fatigue process.
We study the impact of different interlayers and ferroelectric materials on charge trapping during the endurance fatigue of Si FeFET with TiN/HfxZr1-xO2/interlayer/Si (MFIS) gate stack. We have fabricated FeFET devices with different interlayers (SiO
Ab initio techniques are used to calculate the effective work function (Weff) of a TiN/HfO2/SiO2/Si stack representing a metal-oxide-semiconductor (MOS) transistor gate taking into account first order many body effects. The required band offsets were
Analytical modeling and dynamics of multidomain in metal-ferroelectric-insulator-semiconductor (MFIS)-FETs are presented in this paper. The formation of multi-domain (MD) leads to oscillations in the conduction band in the channel and periodicity in
We fabricate planar all-graphene field-effect transistors with self-aligned side-gates at 100 nm from the main graphene conductive channel, using a single lithographic step. We demonstrate side-gating below 1V with conductance modulation of 35% and t
We fabricated linear arrangements of multiple splitgate devices along an SOI mesa, thus forming a 2xN array of individually controllable Si quantum dots (QDs) with nearest neighbor coupling. We implemented two different gate reflectometry-based reado