ﻻ يوجد ملخص باللغة العربية
The solution of linear systems of equations is a very frequent operation and thus important in many fields. The complexity using classical methods increases linearly with the size of equations. The HHL algorithm proposed by Harrow et al. achieves exponential acceleration compared with the best classical algorithm. However, it has a relatively high demand for qubit resources and the solution $left| x rightrangle $ is in a normalized form. Assuming that the eigenvalues of the coefficient matrix of the linear systems of equations can be represented perfectly by finite binary number strings, three hybrid iterative phase estimation algorithms (HIPEA) are designed based on the iterative phase estimation algorithm in this paper. The complexity is transferred to the measurement operation in an iterative way, and thus the demand of qubit resources is reduced in our hybrid algorithms. Moreover, the solution is stored in a classical register instead of a quantum register, so the exact unnormalized solution can be obtained. The required qubit resources in the three HIPEA algorithms are different. HIPEA-1 only needs one single ancillary qubit. The number of ancillary qubits in HIPEA-2 is equal to the number of nondegenerate eigenvalues of the coefficient matrix of linear systems of equations. HIPEA-3 is designed with a flexible number of ancillary qubits. The HIPEA algorithms proposed in this paper broadens the application range of quantum computation in solving linear systems of equations by avoiding the problem that quantum programs may not be used to solve linear systems of equations due to the lack of qubit resources.
Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to t
Finding solutions to systems of linear equations is a common prob-lem in many areas of science and engineering, with much potential for a speedup on quantum devices. While the Harrow-Hassidim-Lloyd (HHL) quantum algorithm yields up to an exponential
Solving linear systems of equations is essential for many problems in science and technology, including problems in machine learning. Existing quantum algorithms have demonstrated the potential for large speedups, but the required quantum resources a
State-of-the-art noisy intermediate-scale quantum devices (NISQ), although imperfect, enable computational tasks that are manifestly beyond the capabilities of modern classical supercomputers. However, present quantum computations are restricted to e
In this paper we present the tanh method to obtain exact solutions to coupled MkDV system. This method may be applied to a variety of coupled systems of nonlinear ordinary and partial differential equations.