ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid algorithms to solve linear systems of equations with limited qubit resources

155   0   0.0 ( 0 )
 نشر من قبل Guojian Wu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The solution of linear systems of equations is a very frequent operation and thus important in many fields. The complexity using classical methods increases linearly with the size of equations. The HHL algorithm proposed by Harrow et al. achieves exponential acceleration compared with the best classical algorithm. However, it has a relatively high demand for qubit resources and the solution $left| x rightrangle $ is in a normalized form. Assuming that the eigenvalues of the coefficient matrix of the linear systems of equations can be represented perfectly by finite binary number strings, three hybrid iterative phase estimation algorithms (HIPEA) are designed based on the iterative phase estimation algorithm in this paper. The complexity is transferred to the measurement operation in an iterative way, and thus the demand of qubit resources is reduced in our hybrid algorithms. Moreover, the solution is stored in a classical register instead of a quantum register, so the exact unnormalized solution can be obtained. The required qubit resources in the three HIPEA algorithms are different. HIPEA-1 only needs one single ancillary qubit. The number of ancillary qubits in HIPEA-2 is equal to the number of nondegenerate eigenvalues of the coefficient matrix of linear systems of equations. HIPEA-3 is designed with a flexible number of ancillary qubits. The HIPEA algorithms proposed in this paper broadens the application range of quantum computation in solving linear systems of equations by avoiding the problem that quantum programs may not be used to solve linear systems of equations due to the lack of qubit resources.



قيم البحث

اقرأ أيضاً

Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to t he number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2*2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.
Finding solutions to systems of linear equations is a common prob-lem in many areas of science and engineering, with much potential for a speedup on quantum devices. While the Harrow-Hassidim-Lloyd (HHL) quantum algorithm yields up to an exponential speed-up over classical algorithms in some cases, it requires a fault-tolerant quantum computer, which is unlikely to be available in the near term. Thus, attention has turned to the investigation of quantum algorithms for noisy intermediate-scale quantum (NISQ) devices where several near-term approaches to solving systems of linear equations have been proposed. This paper focuses on the Variational Quantum Linear Solvers (VQLS), and other closely related methods. This paper makes several contributions that include: the first application of the Evolutionary Ansatz to the VQLS (EAVQLS), the first implementation of the Logical Ansatz VQLS (LAVQLS), based on the Classical Combination of Quantum States (CQS) method, the first proof of principle demonstration of the CQS method on real quantum hardware and a method for the implementation of the Adiabatic Ansatz (AAVQLS). These approaches are implemented and contrasted.
Solving linear systems of equations is essential for many problems in science and technology, including problems in machine learning. Existing quantum algorithms have demonstrated the potential for large speedups, but the required quantum resources a re not immediately available on near-term quantum devices. In this work, we study near-term quantum algorithms for linear systems of equations of the form $Ax = b$. We investigate the use of variational algorithms and analyze their optimization landscapes. There exist types of linear systems for which variational algorithms designed to avoid barren plateaus, such as properly-initialized imaginary time evolution and adiabatic-inspired optimization, suffer from a different plateau problem. To circumvent this issue, we design near-term algorithms based on a core idea: the classical combination of variational quantum states (CQS). We exhibit several provable guarantees for these algorithms, supported by the representation of the linear system on a so-called Ansatz tree. The CQS approach and the Ansatz tree also admit the systematic application of heuristic approaches, including a gradient-based search. We have conducted numerical experiments solving linear systems as large as $2^{300} times 2^{300}$ by considering cases where we can simulate the quantum algorithm efficiently on a classical computer. These experiments demonstrate the algorithms ability to scale to system sizes within reach in near-term quantum devices of about $100$-$300$ qubits.
State-of-the-art noisy intermediate-scale quantum devices (NISQ), although imperfect, enable computational tasks that are manifestly beyond the capabilities of modern classical supercomputers. However, present quantum computations are restricted to e xploring specific simplified protocols, whereas the implementation of full-scale quantum algorithms aimed at solving concrete large scale problems arising in data analysis and numerical modelling remains a challenge. Here we introduce and implement a hybrid quantum algorithm for solving linear systems of equations with exponential speedup, utilizing quantum phase estimation, one of the exemplary core protocols for quantum computing. We introduce theoretically classes of linear systems that are suitable for current generation quantum machines and solve experimentally a $2^{17}$-dimensional problem on superconducting IBMQ devices, a record for linear system solution on quantum computers. The considered large-scale algorithm shows superiority over conventional solutions, demonstrates advantages of quantum data processing via phase estimation and holds high promise for meeting practically relevant challenges.
In this paper we present the tanh method to obtain exact solutions to coupled MkDV system. This method may be applied to a variety of coupled systems of nonlinear ordinary and partial differential equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا