ﻻ يوجد ملخص باللغة العربية
Solving linear systems of equations is essential for many problems in science and technology, including problems in machine learning. Existing quantum algorithms have demonstrated the potential for large speedups, but the required quantum resources are not immediately available on near-term quantum devices. In this work, we study near-term quantum algorithms for linear systems of equations of the form $Ax = b$. We investigate the use of variational algorithms and analyze their optimization landscapes. There exist types of linear systems for which variational algorithms designed to avoid barren plateaus, such as properly-initialized imaginary time evolution and adiabatic-inspired optimization, suffer from a different plateau problem. To circumvent this issue, we design near-term algorithms based on a core idea: the classical combination of variational quantum states (CQS). We exhibit several provable guarantees for these algorithms, supported by the representation of the linear system on a so-called Ansatz tree. The CQS approach and the Ansatz tree also admit the systematic application of heuristic approaches, including a gradient-based search. We have conducted numerical experiments solving linear systems as large as $2^{300} times 2^{300}$ by considering cases where we can simulate the quantum algorithm efficiently on a classical computer. These experiments demonstrate the algorithms ability to scale to system sizes within reach in near-term quantum devices of about $100$-$300$ qubits.
Finding solutions to systems of linear equations is a common prob-lem in many areas of science and engineering, with much potential for a speedup on quantum devices. While the Harrow-Hassidim-Lloyd (HHL) quantum algorithm yields up to an exponential
We establish an improved classical algorithm for solving linear systems in a model analogous to the QRAM that is used by quantum linear solvers. Precisely, for the linear system $Ax = b$, we show that there is a classical algorithm that outputs a dat
Quantum computers can produce a quantum encoding of the solution of a system of differential equations exponentially faster than a classical algorithm can produce an explicit description. However, while high-precision quantum algorithms for linear or
Efficient sampling from a classical Gibbs distribution is an important computational problem with applications ranging from statistical physics over Monte Carlo and optimization algorithms to machine learning. We introduce a family of quantum algorit
Polynomial eigenvalue problems (PEPs) arise in a variety of science and engineering applications, and many breakthroughs in the development of classical algorithms to solve PEPs have been made in the past decades. Here we attempt to solve PEPs in a q