ﻻ يوجد ملخص باللغة العربية
We present archival Giant Metrewave Radio Telescope (GMRT) observations of two exoplanetary systems, $tau$ Bootis, and 55 Cancri, at 610 MHz and 150 MHz, respectively. Theoretical models predict these systems to have some of the highest expected flux densities at radio wavelengths. Both $tau$ Bootis and 55 Cancri have been previously observed at low frequency ($sim$ 30 MHz) with Low-Frequency Array (LOFAR) (Turner et al. 2020). $tau$ Bootis shows tentative signatures of circularly polarized emission at 30 MHz, while no emission was detected from 55 Cancri. We do not detect radio emission from both the systems, but the GMRT observations set $3sigma$ upper limits of 0.6 mJy at 610 MHz for $tau$ Bootis and 4.6 mJy at 150 MHz for 55 Cancri. The sensitivity achieved at 610 MHz in these observations is comparable to some of the deepest images of an exoplanet field.
Observing planetary auroral radio emission is the most promising method to detect exoplanetary magnetic fields, the knowledge of which will provide valuable insights into the planets interior structure, atmospheric escape, and habitability. We presen
We perform numerical simulations to study the secular orbital evolution and dynamical structure in the quintuplet planetary system 55 Cancri with the self-consistent orbital solutions by Fischer and coworkers (2008). In the simulations, we show that
We report the analysis of two new spectroscopic observations of the super-Earth 55 Cancri e, in the near infrared, obtained with the WFC3 camera onboard the HST. 55 Cancri e orbits so close to its parent star, that temperatures much higher than 2000
The naked-eye star 55 Cancri hosts a planetary system with five known planets, including a hot super-Earth (55 Cnc e) extremely close to its star and a farther out giant planet (55 Cnc b), found in milder irradiation conditions with respect to other
We present high-resolution near-infrared spectra taken during eight transits of 55 Cancri e, a nearby low-density super-Earth with a short orbital period (< 18 hours). While this exoplanets bulk density indicates a possible atmosphere, one has not be