ﻻ يوجد ملخص باللغة العربية
We perform numerical simulations to study the secular orbital evolution and dynamical structure in the quintuplet planetary system 55 Cancri with the self-consistent orbital solutions by Fischer and coworkers (2008). In the simulations, we show that this system can be stable at least for $10^{8}$ yr. In addition, we extensively investigate the planetary configuration of four outer companions with one terrestrial planet in the wide region of 0.790 AU $leq a leq $ 5.900 AU to examine the existence of potential asteroid structure and Habitable Zones (HZs). We show that there are unstable regions for the orbits about 4:1, 3:1 and 5:2 mean motion resonances (MMRs) with the outermost planet in the system, and several stable orbits can remain at 3:2 and 1:1 MMRs, which is resemblance to the asteroidal belt in solar system. In a dynamical point, the proper candidate HZs for the existence of more potential terrestrial planets reside in the wide area between 1.0 AU and 2.3 AU for relatively low eccentricities.
The bright star 55 Cancri is known to host five planets, including a transiting super-Earth. We use the CHARA Array to directly determine the following of 55 Cncs stellar astrophysical parameters: $R=0.943 pm 0.010 R_{odot}$, $T_{rm EFF} = 5196 pm 24
The bright star 55 Cancri is known to host five planets, including a transiting super-Earth. The study presented here yields directly determined values for 55 Cncs stellar astrophysical parameters based on improved interferometry: $R=0.943 pm 0.010 R
We perform numerical simulations to study the Habitable zones (HZs) and dynamical structure for Earth-mass planets in multiple planetary systems. For example, in the HD 69830 system, we extensively explore the planetary configuration of three Neptune
We present archival Giant Metrewave Radio Telescope (GMRT) observations of two exoplanetary systems, $tau$ Bootis, and 55 Cancri, at 610 MHz and 150 MHz, respectively. Theoretical models predict these systems to have some of the highest expected flux
We integrate the orbital solutions of the planets orbiting 55 Cnc. In the simulations, we find that not only three resonant arguments $theta_{1}=lambda_{1}-3lambda_{2}+2tildeomega_{1}$, $theta_{2}=lambda_{1}-3lambda_{2}+2tildeomega_{2}$ and $theta_{3